Particles similar to a water wave will travel away from the source. On the Earth's surface this would be shown as an aftershock. On the surface of water, the waves would travel in ripples.
Wow! 2.95m/s is a mighty fast pace for a backpacker. Must have one of those Star Wars anti-gravity packs. Also, I would be curious as to why she passed her destination and then walked back.
<span>Anyway, it goes like this: </span>
<span>Say the time walking east is 't', and the total time is 'T'. </span>
<span>Then 5340 m + .511 t = 1.43 T </span>
<span>(This assumes that velocity is positive in both directions) </span>
<span>Two unknowns in one equation. But you also know that the time spent walking west is </span>
<span>5340m/ 2.95m/s = 1810 sec. </span>
<span>and the total time T = 1810 +t </span>
<span>Substitute this into the first equation, and you can solve for t = 3092 sec. </span>
<span>Then T = 4902 sec. and distance walked east is .511t = 1580m.</span>
Explanation:
Given that,
Mass of a body, m = 1 kg
Force constant, k = 16 N/m
We need to find the angular frequency and the frequency of oscillation.
(a) The angular frequency of a body is given by :

(b) The frequency of oscillation is given by :

Hence, this is the required solution.
Answer:
L = 1.545 m
Explanation:
Let the total length of the rod is L
now the torque must applied on the other end of the rod so that it will balance the torque due to weight of rock on other side of fulcrum
so we will have

so we have

F = 663 N

