Answer:

Explanation:
<u>Given Data:</u>
Mass = m = 4 kg
Acceleration due to gravity = g = 9.8 m/s²
Height = h = 1 m
<u>Required:</u>
Potential Energy = P.E. = ?
<u>Formula:</u>
P.E. = mgh
<u>Solution:</u>
P.E. = (4)(9.8)(1)
P.E. = 39.2 Joules
![\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Crule%5B225%5D%7B225%7D%7B2%7D)
Hope this helped!
<h3>~AH1807</h3>
<span>The current is 6 miles per hour.
Let's create a few equations:
Traveling with the current:
(18 + c)*t = 16
Traveling against the current:
(18 - c)*t = 8
Let's multiply the 2nd equation by 2
(18 - c)*t*2 = 16
Now subtract the 1st equation from the equation we just doubled.
(18 - c)*t*2 = 16
(18 + c)*t = 16
(18 - c)*t*2 - (18 + c)*t = 0
Divide both sides by t
(18 - c)*2 - (18 + c) = 0
Now solve for c
(18 - c)*2 - (18 + c) = 0
36 - 2c - 18 - c = 0
36 - 2c - 18 - c = 0
18 - 3c = 0
18 = 3c
6 = c
So the current is 6 mph.
Let's verify that.
(18 + 6)*t = 16
24*t = 16
t = 16/24 = 2/3
(18 - 6)*t = 8
12*t = 8
t = 8/12 = 2/3
And it's verified.</span>
Answer:
42 grams
Explanation:
you multiply the value by 1000 to get your answer
Answer: Tension = 47.8N, Δx = 11.5×
m.
Tension = 95.6N, Δx = 15.4×
m
Explanation: A speed of wave on a string under a tension force can be calculated as:

is tension force (N)
μ is linear density (kg/m)
Determining velocity:


0.0935 m/s
The displacement a pulse traveled in 1.23ms:


Δx = 11.5×
With tension of 47.8N, a pulse will travel Δx = 11.5×
m.
Doubling Tension:



|v| = 0.1252 m/s
Displacement for same time:


15.4×
With doubled tension, it travels
15.4×
m
Answer:
The family would not have hot water unless they were to heat the the water. They would have to depend on the stove in order to survive by heating the house to say alive and not freeze. They would also have to depend on the stove to get hot water to do any, but if the sun goes away for too long and everything starts to die then they will have to use what food and wood that they have in order to survive.
Explanation: