Answer:
We know that for a pendulum of length L, the period (time for a complete swing) is defined as:
T = 2*pi*√(L/g)
where:
pi = 3.14
L = length of the pendulum
g = gravitational acceleration = 9.8 m/s^2
Now, we can think on the swing as a pendulum, where the child is the mass of the pendulum.
Then the period is independent of:
The mass of the child
The initial angle
Where the restriction of not swing to high is because this model works for small angles, and when the swing is to high the problem becomes more complex.
m = mass = 1,200 kg
A = acceleration = 3 m/s^2
Apply Newton's second law:
Force = mass x acceleration
F = 1,200 x 3 =3600 N
The net force the car experiences is 3600 N
1 Bc I just did it and got it right
INDUCTION MOTOR:-
Speed:-Less speed range than PMAC motors • Speed range is a function of the drive being used — to 1,000:1 with an encoder, 120:1 under field-oriented control
Reliability:-Waste heat is capable of degrading insulation essential to motor operation • Years of service common with proper operation
Power density:-Induction produced by squirrel cage rotor inherently limits power density
Accuracy:-Flux vector and field-oriented control allows for some of accuracy of servos
Cost:-Relatively modest initial cost; higher operating costs
PERMANENT MAGNET MORTOR:-
speed:-VFD-driven PMAC motors can be used in nearly all induction-motor and some servo applications • Typical servomotor application speed — to 10,000 rpm — is out of PMAC motor range
Reliability:-Lower operating temperatures reduces wear and tear, maintenance • Extends bearing and insulation life • Robust construction for years of trouble-free operation in harsh environments.
power density:-Rare-earth permanent magnets produce more flux (and resultant torque) for their physical size than induction types.
Accuracy:-Without feedback, can be difficult to locate and position to the pinpoint accuracy of servomotors
<span>Cost:-Exhibit higher efficiency, so their energy use is smaller and full return on their initial purchase cost is realized more quickly</span>
Answer:
802.3kilo joules of energy represents 191.75 kilo calorie