Answer: I would think Europa.
Explanation:
Alkaline earth metal are the elements present in II group in the periodic table and are known as 'Metals' and have a charge of +2.
Alkaline earth metals - Be , Mg Ca, Sr , Ba, Ra
Halogens are present in VII A group in the periodic table and are 'Non-metals' and have a charge of -1.
Halogens - F, Cl, Br, I, At
When Alkaline earth metal (metals) combine with Halogens (non-metals) the compound formed will be ionic compound and the formula of the compound will be based on the charges of the element.
When we write the formula of the ionic compound the charges of the elements get criss crossed.
For example - Mg (Alkaline earth metal) have a charge of +2 and Cl (Halogen) have a charge of -1 and when they combine to form the formula their charges get criss crossed and we will get or
When an alkaline earth metal, A, reacts with a halogen, X, the formula of the Ionic compound formed should be
Answer:
Explanation:
We usually approximate the density of water to about at room temperature. In terms of the precise density of water, this is not the case, however, as density is temperature-dependent.
The density of water decreases with an increase in temperature after the peak point of its density. The same trend might be spotted if the temperature of water is decreased from the peak point.
This peak point at which the density of water has the greatest value is usually approximated to about . For your information, I'm attaching the graph illustrating the function of the density of water against temperature where you could clearly indicate the maximum point.
To a higher precision, the density of water has a maximum value at , and the density at this point is exactly .
The question is incomplete, here is the complete question:
The rate constant of a certain reaction is known to obey the Arrhenius equation, and to have an activation energy Ea = 71.0 kJ/mol . If the rate constant of this reaction is 6.7 M^(-1)*s^(-1) at 244.0 degrees Celsius, what will the rate constant be at 324.0 degrees Celsius?
<u>Answer:</u> The rate constant at 324°C is
<u>Explanation:</u>
To calculate rate constant at two different temperatures of the reaction, we use Arrhenius equation, which is:
where,
= equilibrium constant at 244°C =
= equilibrium constant at 324°C = ?
= Activation energy = 71.0 kJ/mol = 71000 J/mol (Conversion factor: 1 kJ = 1000 J)
R = Gas constant = 8.314 J/mol K
= initial temperature =
= final temperature =
Putting values in above equation, we get:
Hence, the rate constant at 324°C is
Steam rises to the top and stays there