The molar mass of the imaginary compound Z(AX₃)₂ is the sum of the molar mass of Z, A and X.
<h3>How do we calculate molar mass?</h3>
Molar mass of any compound will be calculated by adding the mass of each atoms present in that compound.
Given compound is Z(AX₃)₂, molar mass of the given compound will be calculated as:
Molar mass of Z(AX₃)₂ = Molar mass of Z + molar mass of 2(A) + molar mass of 6(X)
Hence molar mass of Z(AX₃)₂ is the sum of the masses of all atoms.
To know more about molar mass, visit the below link:
brainly.com/question/18983376
#SPJ1
Answer : The number of moles of sulfur needed to oxidize will be, 3 moles
Solution : Given,
Moles of zinc = 3 moles
The balanced reaction will be,

By the stoichiometry, 1 mole of
ion react with the 1 mole of
to give 1 mole of zinc sulfide.
From the balanced reaction, we conclude that
As, 1 mole of zinc react with 1 mole of sulfur
So, 3 moles if zinc react with 3 moles of sulfur
Hence, the number of moles of sulfur needed to oxidize will be, 3 moles
Since you did not give a calculation,
I will just give an example. Suppose that you are to burn 5 kg of methane (CH4)
from 0 to 10°C. The specific heat capacity of methane is 4.475 kJ/kg-K.
H
= mCpT
H
= (5kg)( 4.475 kJ/kg-K)(10-0)
H = 223.75 kJ
Because the enthalpy is positive
in value, methane takes in heat.