Answer:
One mole of carbon would look like 25/12.01
Explanation:
Firstly, you will divide 25 by 12.01 and get 2.081598
We know 1 mole equals the gram per atomic mass, so one mole of carbon is 12.01 grams. In conclusion, it would look like 25/12.01.
Answer:
5010J
Explanation:
The following data were obtained from the question:
Mass (m) = 15g
Heat of fusion (ΔHf) = 334J/g
Heat required (Q) =..?
The heat energy required to melt the ice can be obtained as follow:
Q = m·ΔHf
Q = 15 x 334
Q = 5010J
Therefore, the heat energy required to melt the ice is 5010J.
<u>Answer: </u><em>B. Adding more protons to a positively charged body until the number of protons matches the number of electrons</em>
Option B is the appropriate response
<u>Explanation:</u>
Utilising the equivalent number of inverse charges will kill a charged body.
Adding more protons to a decidedly charged body until the number of protons coordinates the quantity of electrons won't kill the body since protons are emphatically charged particles. Adding more protons to an emphatically charged body would make it all the more decidedly charged.
Enabling free electrons to escape from a contrarily charged body will kill since the more negative body leaves the negative electrons.
Answer: The answer is 6. Or A on USATestprep.
Explanation: The sum of the coefficients of the balanced chemical equation is 6. The coefficients are the numbers in front of the compounds in the reaction equation.