Answer:
hope it helps....
Explanation:
The cellular portion of blood contains red blood cells (RBCs), white blood cells (WBCs) and platelets. The RBCs carry oxygen from the lungs. The WBCs help to fight infection, and platelets are parts of cells that the body uses for clotting. All blood cells are produced in the bone marrow.
Answer: The results agree with the law of conservation of mass
Explanation:
The law of conservation of mass states that mass is neither created nor destroyed in a chemical reaction. On the reactant side, the total mass of reactants is 14.3g and the total product masses is also 14.3g. That implies that no mass was !most in the reaction. The sum of masses on the left hand side corresponds with sum of masses on the right hand side of the reaction equation.
Answer:
increases the frequency of particle collisions
Explanation:
One factor upon which the rate of reaction depends is the surface area of reactants.
According to the collision theory, reactions occur when reactant particles having the required (activation) energy collide with each other, this collision is inelastic. However, collision of particles having energies less than the activation energy results in elastic collisions and no chemical reaction.
The more the exposed surface area of reactants, the greater the number of particles that come into contact with each other and the more the chances of frequent effective collisions that lead to reaction.
Thus, powdered zinc reacts faster with hydrochloric acid than zinc strips
Answer:
Fe^3+
Explanation:
The electron configuration for Fe^3+ is; 1s2 2s2 2p6 3s2 3p6 3d5
The electron configuration for Ni^2+ is; 1s2 2s2 2p6 3s2 3p6 3d8
Now it is pertinent to recall that the 3d sublevel has a maximum occupancy of ten electrons. These ten electrons occupy a set of five degenerate orbitals. Having said that, it is clear that Ni^2+ ion will have two unpaired electrons while Fe^3+ will have five unpaired electrons.
Let us also not forget that paramagnetism has to do with the presence of unpaired electrons. That means that maximum paramagnetism refers to the presence of maximum number of unpaired electrons.
Since Fe^3+ has the greatest number of unpaired electrons among the duo, Fe^3+ will exhibit a maximum paramagnetic behavior.