Answer:
The empirical formula of the compound is = 
The name of the compound is potassium bromate.
Explanation:
Mass of potassium = 4.628 g
Moles of potassium = 
Mass of bromine = 9.457 g
Moles of bromine = 
Mass of oxygen = 5.681 g
Moles of oxygen = 
For empirical formula of the compound, divide the least number of moles from all the moles of elements present in the compound:
Potassium :

Bromine;

Oxygen ;

The empirical formula of the compound is = 
The name of the compound is potassium bromate.
The answer is C, Extinction.
If there was no diversity then a single sickness could wipe out a whole population, but if the population was more varied theres a higher chance someone is more resistant to the sickness and could carry on the species life
Mass of MnO2 = 25 g
The reaction would be 3MnO2 + 4Al --> 3Mn(s) + 2Al2O3
Molar mass of Al = 26.982 g/mol
Molar mass of MnO2 = 54.938 + 2(15.999) = 86.936 g/mol
Calculating the moles = 25 / 86.936 = 0.2876 mol.
Mole ratio MnO2 and Al considering the equation = 3 mol of MnO : 4 mol of Al
Calculating the moles of Al = 0.2876 mol MnO2 x (4 mol of Al / 3 mol of MnO)
Number of moles of Al = 0.3834
Getting the mass in grams as asked = 0.3834 mol x 26.982 g/mol = 10.34 grams.
Answer:
.46 moles H2O2
3,014 grams Au
Explanation:
H2O2:
15.78g (1 mol/34g) = .46 moles H2O2
Au:
15.3mol (197g/mol) = 3,014 grams Au
Answer:
Explanation:
All three lighter boron trihalides, BX3 (X = F, Cl, Br), form stable adducts with common Lewis bases. Their relative Lewis acidities can be evaluated in terms of the relative exothermicities of the adduct-forming reaction. Such measurements have revealed the following sequence for the Lewis acidity: BF3 < BCl3 < BBr3 (in other words, BBr3 is the strongest Lewis acid).
This trend is commonly attributed to the degree of π-bonding in the planar boron trihalide that would be lost upon pyramidalization (the conversion of the trigonal planar geometry to a tetrahedral one) of the BX3 molecule, which follows this trend: BF3 > BCl3 > BBr3 (that is, BBr3 is the most easily pyramidalized). The criteria for evaluating the relative strength of π-bonding are not clear, however. One suggestion is that the F atom is small compared to the larger Cl and Br atoms, and the lone pair electron in the 2pzorbital of F is readily and easily donated, and overlaps with the empty 2pz orbital of boron. As a result, the [latex]\pi[/latex] donation of F is greater than that of Cl or Br. In an alternative explanation, the low Lewis acidity for BF3 is attributed to the relative weakness of the bond in the adducts F3B-L.