The Relative Formula Mass of NaH2PO4 is 120 g/mol
Therefore, the number of moles = 6.6/120
= 0.055 moles of NaH2PO4 which is also equal to the number of moles of H2PO4.
[H2PO4-] = Number of moles oof H2PO4-/Volume of the solution in L
= 0.055/ ( 355 ×10^-3)
= 0.155 M
Na2HPO4 undergoes complete dissociation as follows;
Na2HPO4 (aq)= 2Na+ (aq) + HPO4^2- (aq)
1 mole of Na2HPO4 = 142 g/mol
Therefore; number of moles = 8.0/142
= 0.0563 moles
[HPO4 ^-2] is given by no of moles HPO4^2- /volume of the solution in L
= 0.0563/(355×10^-3)
= 0.1586 M
Both H2PO4^2- and HPO4^2- are weak acids the undergoes partial dissociation
Ka of H2PO4- = 6.20 × 10^-8
[H+] =Ka*([H2PO4-]/[HPO4(2-)]
= (6.20 ×10^-8)×(0.155/0.1586)
= 6.059 ×10^-8 M
pH = - log[H+]
= - log (6.059×10^-8)
= 7.218
Just find the energy of the <span>blueviolet light with a wavelength of 434.0 nm using the formula:
E = hc / lambda
E = energy
c= speed of light = 3 x 10^8 m/s
h = planck's constant = 6.6 x 10^{-34} m^2 kg / s
lambda = 434 nm = 434 x 10^{-9} m
Putting these values (with appropriate units) in the above formula :
we get: Energy, E = 4.5 x 10^{-19} J
E = 0.45 x 10^{-18} J
Now, the </span>minimum energy is 2.18×10^-{18} J but our energy is 0.45 x 10^{-18} J which is less.
<span>Means the electron will not be removed
</span>
Francium is an element that melts at room temperature. Francium is a highly reactive element, and only contains one valence electron, which is very ironic in my opinion.
Sodium Na is a metal that belong to the alkali metal with low density and soft