Answer:
Kinetic energy is directly proportional to mass
Explanation:
Kinetic energy is directly proportional to the mass of an object and also directly proportional to the square of the velocity of that object:

Notice that if we keep velocity constant and only increase the mass of a object, the kinetic energy of that object would increase, as we've already emphasized the direct relationship between the kinetic energy term and the mass term.
Let's take a simple example: assume that object 1 and object 2 are both moving at the same velocity but object 1 has a much lower mass than object 2. According to the equation, object 1 has lower kinetic energy. This object can then transform all of its kinetic energy into some other form, say, heat the ground. The heat transferred will be significantly lower than by the object 2 moving at the same velocity but having a much greater mass.
Answer:
chloroplast organelle
Answer. The photosynthesis process takes place in the chloroplast organelle in the growing tissues. As the chlorophyll pigment is available in the chloroplast organelle which is the main photosynthetic pigment, with the help of the molecules they capture the energy of light.
Explanation:
chloroplasts
In plants, photosynthesis takes place in chloroplasts, which contain the chlorophyll. Chloroplasts are surrounded by a double membrane and contain a third inner membrane, called the thylakoid membrane, that forms long folds within the organelle.
According to the kinetic theory, the mean free path is the average distance a single atom or molecule of an element or compound travels with respect with the other atoms during a collision. The greater the mean free path, the more ideal the behavior of a gas molecule is because intermolecular forces are minimum. To understand which factors affect the mean free path, the equation is written below.
l = μ/P * √(πkT/2m), where
l is the mean free path
μ is the viscosity of the fluid
P is the pressure
k is the Boltzmann's constant
T is the absolute temperature
m is the molar mass
So, here are the general effects of the factors on the mean free path:
Mean free path increases when:
1. The fluid is viscous (↑μ)
2. At low pressures (↓P)
3. At high temperatures (↑T)
4. Very light masses (↓m)
The opposite is also true for when the mean free path decreases. Factors that are not found here have little or no effect.
Answer:
Photosynthesis
Explanation:
As the plants are converting the CO2 into O2... So the photosynthesis reduce the amount of CO2...
It will Reveal how the earth's tempature a fluctuated in the past.
(2nd dot down)
Seems like you alredy have it!