Answer:
down below
Explanation:
Since we aren't the given the time, lets say that an object to 25 seconds to fall 50 meters. We can use the formula [ s = d/t ] to solve.
s = 50/25
s = 2
Therefore, the object was falling at a rate of 2 meters per second.
Best of Luck!
When you drop an object on the moon, it falls to the ground.
But it only falls about 1/6 as fast as it falls on Earth.
I think it should be D as momentum is the product of mass and velocity...
Answer:
d = 44.64 m
Explanation:
Given that,
Net force acting on the car, F = -8750 N
The mass of the car, m = 1250 kg
Initial speed of the car, u = 25 m/s
Final speed, v = 0 (it stops)
The formula for the net force is :
F = ma
a is acceleration of the car

Let d be the breaking distance. It can be calculated using third equation of motion as :

So, the required distance covered by the car is 44.64 m.
The net force on the object as described is; 58.84N
Two forces acting on the object are;
- The <em>applied force and the frictional force.</em>
In essence; the frictional force can be evaluated as;
- Frictional force; = coefficient × Weight of object.
- Frictional force = 0.21 × 20 × 9.8.
- Frictional force = 41.16N
- The Net force = Applied force - frictional force
Net Force = 58.84 N.
Read more:
brainly.com/question/94428