There are two torques t1 and t2 on the beam due to the weights, one torque t3 due to the weight of the beam, and one torque t4 due to the string.
You need to figure out t4 to know the tension in the string.
Since the whole thing is not moving t1 + t2 + t3 = t4.
torque t = r * F * sinФ = distance from axis of rotation * force * sin (∡ between r and F)
t1 =3.2 * 44g
t2 = 7 * 49g
t3 = 3.5 * 24g
t4 = t1 + t2 + t3 = 5570,118
The t4 also is given by:
t4 = r * T * sin Ф
r = 7
Ф = 32°
T: tension in the string
T = t4 / (r * sinФ)
T = t4 / (7 * sin(32°))
T = 1501,6 N
<h2>Answer: decreasing</h2>
An RC circuit is an electrical circuit composed of resistors and capacitors, where the charging time of the circuit is proportional to the magnitude of the electrical resistance and the capacity of the capacitor.
As shown below:
In this context, the electrical resistance is the opposition to the flow of electrons when moving through a conductor.
Therefore:
<h2>When a capacitor is being charged in an RC circuit, the current flowing through a resistor <u>decreases</u>.</h2>
And the correct option is b.
The answer would most likely be A since obviously gravity weighs things down which helps the every other masses stay settled in place
Answer:
Ruko zara kuch Time dedo na please