Answer: 313920
Explanation:First, we’re going to assume that the top of the circular plate surface is 2 meters under the water. Next, we will set up the axis system so that the origin of the axis system is at the center of the plate.
Finally, we will again split up the plate into n horizontal strips each of width Δy and we’ll choose a point y∗ from each strip. Attached to this is a sketch of the set up.
The water’s surface is shown at the top of the sketch. Below the water’s surface is the circular plate and a standard xy-axis system is superimposed on the circle with the center of the circle at the origin of the axis system. It is shown that the distance from the water’s surface and the top of the plate is 6 meters and the distance from the water’s surface to the x-axis (and hence the center of the plate) is 8 meters.
The depth below the water surface of each strip is,
di = 8 − yi
and that in turn gives us the pressure on the strip,
Pi =ρgdi = 9810 (8−yi)
The area of each strip is,
Ai = 2√4− (yi) 2Δy
The hydrostatic force on each strip is,
Fi = Pi Ai=9810 (8−yi) (2) √4−(yi)² Δy
The total force on the plate is found on the attached image.
Answer: The net force acting on the car 1,299.3 N.
Explanation:
Mass of the car = 710 kg
Initial velocity of the car of the ,u= 37 km/h= 10.27 m/s 
Final velocity of the car,v = 120 km/h = 33.33 m/s
time taken b y car = 12.6 sec
v-u=at





The net force acting on the car 1,299.3 N.
If the velocity of the train is v=s/t, where s is the distance and t is time, then v=400/5=80m/s. To get the vertical component of the velocity we need to multiply the velocity v with a sin(α): Vv=v*sin(α), where Vv is the vertical component of the velocity and α is the angle with the horizontal. So:
Vv=80*sin(10)=80*0.1736=13.888 m/s.
So the vertical component of the velocity of the train is Vv=13.888 m/s.
Answer:
Explanation:
a )
Reaction force of the ground
R = mg
= 160 N
Maximum friction force possible
= μ x R
= μ x 160
= .4 x 160
= 64 N .
b )
160 N will act at middle point . 740N will act at distance of 3 / 5 m from the wall ,
Taking moment about top point of ladder
160 x 1.5 + 740 x 3/5 + f x 4 = 900 x 3
240 + 444 + 4f = 2700
f = 504 N
c )
Let x be the required distance.
Taking moment about top point of ladder
160 x 1.5 + 740 x 3 x / 5 + .4 x 900 x 4 = 900 x 3 ( .4 x 900 is the maximum friction possible )
240 + 444 x + 1440 = 2700
x = 2.3 m
so man can go upto 2.3 at which maximum friction acts .