1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kolbaska11 [484]
4 years ago
6

A bicycle wheel rotates at a constant 25 rev/min. What is true about its angular acceleration?

Physics
1 answer:
Nostrana [21]4 years ago
8 0

Answer:

The angular acceleration is zero

Explanation:

When an object is in rotational motion, it has a certain angular velocity, which is the rate of displacement of its angular position.

This angular velocity can change or remain constant - this is given by the angular acceleration, which is:

\alpha =\frac{\Delta \omega}{\Delta t}

where

\Delta \omega is the change in angular velocity

\Delta t is the time elapsed

Therefore, the angular acceleration is the rate of change of angular velocity.

In this problem, the bicycle rotates at a constant angular velocity of

\omega=25 rev/min

This means that the change in angular velocity is zero:

\Delta \omega=0

And so, that the angular acceleration is zero:

\alpha=0

You might be interested in
Sarah wants to install a wind turbine on her farm, which would convert wind energy to electricity to power her home. She can onl
Marina86 [1]

Answer:

The best choice would be c

Explanation: Sarah wants this wind turbine to efficient since she can only get one. C has the most reasonable option data collected will help her know the best wind speed over her farm.

6 0
3 years ago
Read 2 more answers
What force is required to accelerate a body with a mass of 15kilograms at a rate of
Paladinen [302]

The force required is

                     (15 kg) x (the acceleration, in m/s²)          newtons.

4 0
3 years ago
A particle has a charge of q = +4.9 μC and is located at the origin. As the drawing shows, an electric field of Ex = +242 N/C ex
irina1246 [14]

a)

F_{E_x}=1.19\cdot 10^{-3}N (+x axis)

F_{B_x}=0

F_{B_y}=0

b)

F_{E_x}=1.19\cdot 10^{-3} N (+x axis)

F_{B_x}=0

F_{B_y}=3.21\cdot 10^{-3}N (+z axis)

c)

F_{E_x}=1.19\cdot 10^{-3} N (+x axis)

F_{B_x}=3.21\cdot 10^{-3} N (+y axis)

F_{B_y}=3.21\cdot 10^{-3}N (-x axis)

Explanation:

a)

The electric force exerted on a charged particle is given by

F=qE

where

q is the charge

E is the electric field

For a positive charge, the direction of the force is the same as the electric field.

In this problem:

q=+4.9\mu C=+4.9\cdot 10^{-6}C is the charge

E_x=+242 N/C is the electric field, along the x-direction

So the electric force (along the x-direction) is:

F_{E_x}=(4.9\cdot 10^{-6})(242)=1.19\cdot 10^{-3} N

towards positive x-direction.

The magnetic force instead is given by

F=qvB sin \theta

where

q is the charge

v is the velocity of the charge

B is the magnetic field

\theta is the angle between the directions of v and B

Here the charge is stationary: this means v=0, therefore the magnetic force due to each component of the magnetic field is zero.

b)

In this case, the particle is moving along the +x axis.

The magnitude of the electric force does not depend on the speed: therefore, the electric force on the particle here is the same as in part a,

F_{E_x}=1.19\cdot 10^{-3} N (towards positive x-direction)

Concerning the magnetic force, we have to analyze the two different fields:

- B_x: this field is parallel to the velocity of the particle, which is moving along the +x axis. Therefore, \theta=0^{\circ}, so the force due to this field is zero.

- B_y: this field is perpendicular to the velocity of the particle, which is moving along the +x axis. Therefore, \theta=90^{\circ}. Therefore, \theta=90^{\circ}, so the force due to this field is:

F_{B_y}=qvB_y

where:

q=+4.9\cdot 10^{-6}C is the charge

v=345 m/s is the velocity

B_y = +1.9 T is the magnetic field

Substituting,

F_{B_y}=(4.9\cdot 10^{-6})(345)(1.9)=3.21\cdot 10^{-3} N

And the direction of this force can be found using the right-hand rule:

- Index finger: direction of the velocity (+x axis)

- Middle finger: direction of the magnetic field (+y axis)

- Thumb: direction of the force (+z axis)

c)

As in part b), the electric force has not change, since it does not depend on the veocity of the particle:

F_{E_x}=1.19\cdot 10^{-3}N (+x axis)

For the field B_x, the velocity (+z axis) is now perpendicular to the magnetic field (+x axis), so the force is

F_{B_x}=qvB_x

And by substituting,

F_{B_x}=(4.9\cdot 10^{-6})(345)(1.9)=3.21\cdot 10^{-3} N

And by using the right-hand rule:

- Index finger: velocity (+z axis)

- Middle finger: magnetic field (+x axis)

- Thumb: force (+y axis)

For the field B_y, the velocity (+z axis) is also perpendicular to the magnetic field (+y axis), so the force is

F_{B_y}=qvB_y

And by substituting,

F_{B_y}=(4.9\cdot 10^{-6})(345)(1.9)=3.21\cdot 10^{-3} N

And by using the right-hand rule:

- Index finger: velocity (+z axis)

- Middle finger: magnetic field (+y axis)

- Thumb: force (-y axis)

3 0
4 years ago
A what occurs when light changes direction after colliding with particles of matter
Paha777 [63]
I believe scattering is what occurs when light essentially changes direction after colliding with small particles of matter.
7 0
4 years ago
The ocean’s tides are not only affected by the shape of the coastlines, or slope of the ocean floor, but also by the gravitation
dexar [7]

Answer:

a) According to Newton's law of gravitation, as the distance between the Moon and the Earth decreases, the gravitational attraction increases and vice versa

The gravitational force of the Moon on the Earth causes the Earth to be slightly bulged on the side directly facing the Moon

The gravitational force also pulls the water bodies on the Earth's surface towards the Moon in the same manner and the effect is more pronounced due to the ability of the liquid water to assume a shape based on the magnitude of the gravitational field attracting it

Therefore, the region where the Moon is closest to the Earth we have a high tide as the water level rises and the region which is perpendicular to where the Moon is located has a  low tide

b) The two special types of tides are

1) The neap tide

2) The spring tide

Neap tide

Neap tide occurs when the Sun and Moon are 90° apart from each other when they are viewed by an observer from Earth

The gravitational pull of the Sun cancels (partially) the effect of the gravitational pull and tidal force of the Moon, resulting in minimum tidal range

Spring Tide

Spring tide occurs when the Earth, the Moon, and the Sun are simultaneously inline, such that the Sun reinforces the gravitational pull and tidal force of the Moon, resulting in a maximum tidal range

Explanation:

4 0
3 years ago
Read 2 more answers
Other questions:
  • Which phase of cell division results in the formation of 4 new haploid cells
    9·1 answer
  • PLEASE HELP!!!
    12·2 answers
  • What is the sl unit for length
    6·1 answer
  • If you rub a balloon on a piece of fabric or carpeting and then hold it against your head, your hair can stand on end. Why does
    14·1 answer
  • Renewable energy has no disadvantages. True or False
    14·2 answers
  • An insulating cup contains 200 grams of water at 25 ∘C. Some ice cubes at 0 ∘C is placed in the water. The system comes to equil
    14·1 answer
  • Does a break in one branch affect another branch in a parallel circuit
    12·1 answer
  • Two billiard balls having the same mass and speed roll directly toward each other. What is their combined momentum after they me
    15·1 answer
  • 1) A 2-kg object moving at 10 m/s has a 4-N force applied to it. Can you predict how the force will affect the object?
    11·1 answer
  • An uncharged, nonconducting, hollow sphere of radius 10.0cm surrounds a 10.0-μC charge located at the origin of a Cartesian coor
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!