1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pogonyaev
3 years ago
9

Oil with a density of 800 kg/m3 is pumped from a pressure of 0.6 bar to a pressure of 1.4 bar, and the outlet is 3 m above the i

nlet. The volumetric flow rate is 0.2 m3/s, and the inlet and exit areas are 0.06 m2 and 0.03 m3, respectively. (a) Assuming the temperature to remain constant and neglecting any heat transfer, determine the power input to the pump in kW. (b) What-if Scenario: What would the necessary power input be if the change in KE were neglected in the analysis??
Engineering
1 answer:
Naddik [55]3 years ago
6 0

Answer:

23.3808 kW

20.7088 kW

Explanation:

ρ = Density of oil = 800 kg/m³

P₁ = Initial Pressure = 0.6 bar

P₂ = Final Pressure = 1.4 bar

Q = Volumetric flow rate = 0.2 m³/s

A₁ = Area of inlet = 0.06 m²

A₂ = Area of outlet = 0.03 m²

Velocity through inlet = V₁ = Q/A₁ = 0.2/0.06 = 3.33 m/s

Velocity through outlet = V₂ = Q/A₂ = 0.2/0.03 = 6.67 m/s

Height between inlet and outlet = z₂ - z₁ = 3m

Temperature to remains constant and neglecting any heat transfer we use Bernoulli's equation

\frac {P_1}{\rho g}+\frac{V_1^2}{2g}+z_1+h=\frac {P_2}{\rho g}+\frac{V_2^2}{2g}+z_2\\\Rightarrow h=\frac{P_2-P_1}{\rho g}+\frac{V_2^2-V_1^2}{2g}+z_2-z_1\\\Rightarrow h=\frac{(1.4-0.6)\times 10^5}{800\times 9.81}+\frac{6.67_2^2-3.33^2}{2\times 9.81}+3\\\Rightarrow h=14.896\ m

Work done by pump

W_{p}=\rho gQh\\\Rightarrow W_{p}=800\times 9.81\times 0.2\times 14.896\\\Rightarrow W_{p}=23380.8\ W

∴ Power input to the pump 23.3808 kW

Now neglecting kinetic energy

h=\frac{P_2-P_1}{\rho g}+z_2-z_1\\\Righarrow h=\frac{(1.4-0.6)\times 10^5}{800\times 9.81}+3\\\Righarrow h=13.19\ m\\

Work done by pump

W_{p}=\rho gQh\\\Rightarrow W_{p}=800\times 9.81\times 0.2\times 13.193\\\Rightarrow W_{p}=20708.8\ W

∴ Power input to the pump 20.7088 kW

You might be interested in
16. Driverless cars have already , and they look so cool.
Gekata [30.6K]
Answer:
C. Exist
Hope it helps!
4 0
2 years ago
Read 2 more answers
When we utilize a visualization on paper/screen, that visualization is limited to exploring: Group of answer choices Relationshi
Mila [183]

Answer:

As many variables as we can coherently communicate in 2 dimensions

Explanation:

Visualization is a descriptive analytical technique that enables people to see trends and dependencies of data with the aid of graphical information tools. Some of the examples of visualization techniques are pie charts, graphs, bar charts, maps, scatter plots, correlation matrices etc.

When we utilize a visualization on paper/screen, that visualization is limited to exploring as many variables as we can coherently communicate in 2-dimensions (2D).

6 0
3 years ago
Which of the following identifies the limitations of green engineering?
olga_2 [115]

Answer:

Resources and Cost

Explanation:

  • Cost: Sustainable choices can value a lot of as a result of they price makers more to provide. Thus, there'll always be an oversized initial investment once selecting a green element for your home.
  • Resources: Sustainable materials don't seem to be always as without delay available as their less eco-friendly alternatives.

Hope it helps!<3

4 0
2 years ago
Please write the following code in Python 3. Also please show all output(s) and share your code.
maksim [4K]

Answer:

sum2 = 0

counter = 0

lst = [65, 78, 21, 33]

while counter < len(lst):

   sum2 = sum2 + lst[counter]

   counter += 1

Explanation:

The counter variable is initialized to control the while loop and access the numbers in <em>lst</em>

While there are numbers in the <em>lst</em>,  loop through <em>lst</em>

Add the numbers in <em>lst</em> to the sum2

Increment <em>counter</em> by 1 after each iteration

6 0
3 years ago
If a shear stress acts in one plane of an element, there must be an equal and opposite shear stress acting on a plane that is
xxMikexx [17]

Answer:

90 degrees

Explanation:

In the case when the sheer stress acts in the one plane of an element so it should be equal and opposite also the shear stress acted on a plan i.e. 90 degrees from the plane

Therefore as per the given situation it should be 90 degrees from the plane

hence, the same is to be considered and relevant too

5 0
2 years ago
Read 2 more answers
Other questions:
  • Practicing new things strains your brain fibers, weakening your ability to make connections.
    13·1 answer
  • Show from the first principles that, for a perfect gas with constant specific heat capacities
    14·1 answer
  • 1 2 3 4 5 6 7 8 9 10
    14·1 answer
  • A signalized intersection approach has three lanes with no exclusive left or right turning lanes. The approach has a 40-second g
    10·1 answer
  • Depreciation is.... *
    7·2 answers
  • A hollow, spherical shell with mass 2.00kg rolls without slipping down a slope angled at 38.0?.
    15·1 answer
  • Which type of Bridge is considered the strongest in both compression and tension?
    11·2 answers
  • Omplete the following program: [0.5 X 4 = 2]
    11·1 answer
  • Water is pumped from a lake to a storage tank 18 m above at a rate of 70 L/s while consuming 20.4 kW of electric power. Disregar
    13·1 answer
  • PDC Bank is working on creating an AI application that enables customers to send SMS to the AI application to allow banking acti
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!