Water supply.
Food production.
Housing and shelter.
Sanitation and waste management.
Energy development.
Transportation.
Explanation:
The two types of furnaces used in steel production are:
<u>Basic oxygen furnace </u>
In basic oxygen furnace, iron is combined with the varying amounts of the steel scrap and also small amounts of the flux in the Blast Furnace. Lance is introduced in vessel and blows about 99% of the pure oxygen causing rise in temperature to about 1700°C. This temperature melts scrap and the impurities are oxidized and results in the liquid steel.
<u>Electric arc furnace</u>
Electric arc furnace reuses existing steel. Furnace is charged with the steel scrap. It operates on basis of electrical charge between the two electrodes providing heat for process. Power is supplied through electrodes placed in furnace, which produce arc of the electricity through scrap steel which raises temperature to about 1600˚C. This temperature melts scrap and the impurities can be removed through use of the fluxes and results in the liquid steel.
Answer:
vehicle density = 28.205 veh/mile
flow rate = 0.909 veh/hr
Explanation:
given data
count n = 21
distance = 0.78 miles
speed = 52 mph
solution
we get here vehicle density that is express as
vehicle density = n ÷ distance ...............1
vehicle density = ( 21 + 1 ) ÷ 0.78
vehicle density k = 28.205 veh/mile
and
now we get here flow rate that is express as
flow rate = k × vs .................2
flow rate = 28.205 × ( 52 × 0.00062 ÷ 1m )
flow rate = 0.909 veh/hr
B
But
I think
So yea it prob isn’t
Answer:
the diffusion coefficient at 900°C is D₂=8.9*10⁻¹⁸ m²/s
Explanation:
The dependence of the diffusion coefficient is similar to the dependence of chemical reaction rate with respect to temperature , where
D=D₀*e^(-Q/RT)
where
D₀= diffusion energy at T=∞
Q= activation energy
T= absolute temperature
D= diffusion coefficient at temperature T
R=ideal gas constant
for temperatures T₁ and T₂
D₁=D₀*e^(-Q/RT₁)
D₂=D₀*e^(-Q/RT₂)
dividing both equations and rearranging terms we get
D₂=D₁*e^[-Q/R(1/T₂-1/T₁)]
replacing values
D₂=D₁*e^[-Q/R(1/T₂-1/T₁)] = 1.3*10⁻²² m²/s*e^(-256,000 J/mol/8.314 J/(mol K)*(1/1073K-1/773K) = 8.9*10⁻¹⁸ m²/s