1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nasty-shy [4]
3 years ago
8

Water flows at a rate of 10 gallons per minute in a new horizontal 0.75?in. diameter galvanized iron pipe. Determine the pressur

e gradient, ?P/L, along the pipe.
Engineering
1 answer:
ruslelena [56]3 years ago
3 0

Answer:

\frac{\delta p }{l} = 30.4 lb/ft^3

Explanation:

Given data:

flow rate = 10 gallon per  minute = 0.0223 ft^3/sec

diameter = 0.75 inch

we know discharge is given as

Q =  VA

solve for velocity V = \frac{Q}{A}[/tex]

V = \frac{0.223}{\frac{\pi}{4} \frac{0.75}{12}}

V = 7.27 ft/sec

we know that Reynold number

Re = \frac{VD}{\nu}

Re = \frac{7.27 \times \frac{0.75}{12}}{1.21\times 10^{-5}}

Re = 3.76 \times 10^4

calculate the \frac{\epsilon }{D}ratio to determine the fanning friction f

\frac{\epsilon }{D} = \frac{0.0005}{\frac{0.75}{12}} = 0.008

from moody diagram f value corresonding to Re and \frac{\epsilon }{D}is 0.037

for horizontal pipe

\delta p = \frac{f l \rho v^2}{2D}

\frac{\delta p }{l} = \frac{1 \times 0.037 \times 1.94 \times 7.27}{\frac{0.75}{12}}

where 1.94 slug/ft^3is density of  water

\frac{\delta p }{l} = 30.4 lb/ft^3

You might be interested in
Which investigative process is most helpful for learning about past societies?
tatuchka [14]

Answer: think it A

Explanation: makes

6 0
3 years ago
You should use the pass technique a fire extinguisher
PilotLPTM [1.2K]

Answer:

Yes

Explanation:

8 0
2 years ago
Drum brakes are usually designed so that the condition of the lining can be checked even if the drum has not been
artcher [175]

Answer:

no it has to be removed

Explanation:

8 0
3 years ago
A heat pump with an ideal compressor operates between 0.2 MPa and 1 MPa. Refrigerant R134a flows through the system at a rate of
solmaris [256]

Answer:

The mass flow rate of refrigerant is 0.352 kg/s

Explanation:

Considering the cycle of an ideal heat pump, provided in the attachment, we first find enthalpy at state B and D. For that purpose, we use property tables of refrigerant R134a:

<u>At State A</u>:

From table, we see the enthalpy and entropy value of saturated vapor at 0.2 MPa. Therefore:

ha = 244.5 KJ/kg

Sa = 0.93788 KJ/kg.k

<u>At State B</u>:

Since, the process from state A to B is isentropic. Therefore,

Sb = Sa = 0.93788 KJ/Kg

From table, we see the enthalpy value of super heated vapor at 1 MPa and Sb. Therefore:

hb = 256.85 KJ/kg                          (By interpolation)

<u>At State C</u>:

From table, we see the enthalpy and entropy value of saturated liquid at 1 MPa. Therefore:

hc = 107.34 KJ/kg

Now, from the diagram it is very clear that:

Heat Loss = m(hb = hc)

m = (Heat Loss)/(hb - hc)

where,

m = mass flow rate = ?

Heat Loss = (180,000 Btu/hr)(1.05506 KJ/1 Btu)(1 hr/3600 sec)

Heat Loss = 52.753 KW

Therefore,

m = (52.753 KJ/s)/(256.85 KJ/kg - 107.34 KJ/kg)

<u>m = 0.352 kg/s</u>

5 0
3 years ago
g Let the charges start infinitely far away and infinitely far apart. They are placed at (6 cm, 0) and (0, 3 cm), respectively,
irina1246 [14]

Answer:

a) V =10¹¹*(1.5q₁ + 3q₂)

b) U = 1.34*10¹¹q₁q₂

Explanation:

Given

x₁ = 6 cm

y₁ = 0 cm

x₂ = 0 cm

y₂ = 3 cm

q₁ = unknown value in Coulomb

q₂ = unknown value in Coulomb

A) V₁ = Kq₁/r₁

where   r₁ = √((6-0)²+(0-0)²)cm = 6 cm = 0.06 m

V₁ = 9*10⁹q₁/(0.06) = 1.5*10¹¹q₁

V₂ = Kq₂/r₂

where   r₂ = √((0-0)²+(3-0)²)cm = 3 cm = 0.03 m

V₂ = 9*10⁹q₂/(0.03) = 3*10¹¹q₂

The electric potential due to the two charges at the origin is

V = ∑Vi = V₁ + V₂ = 1.5*10¹¹q₁ + 3*10¹¹q₂ = 10¹¹*(1.5q₁ + 3q₂)

B) The electric potential energy associated with the system, relative to their infinite initial positions, can be obtained as follows

U = Kq₁q₂/r₁₂

where

r₁₂ = √((0-6)²+(3-0)²)cm = √45 cm = 3√5 cm = (3√5/100) m

then

U = 9*10⁹q₁q₂/(3√5/100)

⇒ U = 1.34*10¹¹q₁q₂

5 0
3 years ago
Other questions:
  • Sea X una variable aleatoria con funci´on de densidad
    9·1 answer
  • An FCC iron-carbon alloy initially containing 0.20 wt% C is carburized at an elevated temperature and in an atmosphere wherein t
    6·1 answer
  • Design a PLC ladder logic program to control the operation of a conveyor-storage system using the following sequence: - 1. Progr
    5·1 answer
  • The Emergency Stop Button icon on the Inputs toolbar can be used to press or release the Emergency Stop button on the CNC machin
    10·1 answer
  • Pls help me answer my module
    13·1 answer
  • . A piston-cylinder device whose piston is resting on top of a set of stops initially contains 0.5 kg of helium gas at 100 kPa a
    14·1 answer
  • Suppose you have a Y-connected balanced three-phase load which consumes 200 kW with pf of 0.707 lagging. The line-to-line voltag
    14·1 answer
  • A 230 V shunt motor has a nominal armature current of 60 A. If the armature resistance is 0.15 ohm, calculate the following: a.
    5·1 answer
  • 6.3.3 Marks on an exam in a statistics course are assumed to be normally distributed
    14·1 answer
  • What is photosynthesis​
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!