1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olganol [36]
3 years ago
9

There are two questions about SolidWorks.

Engineering
1 answer:
Nataliya [291]3 years ago
4 0

Answer:

1. It is a good practice to fully define a sketch to avoid having erroneous dimensions on the faces of a solid, this avoids that when it is required to make an assembly with the drawn part appear assembly errors.

2. The 2D sketch should always be done on a plane, so solidworks would ask you to select a plane on which you want to make the sketch, on the other hand, if it is a 3D sketch, solidworks allows you to do it without the need for Select any plane.

You might be interested in
Methane and oxygen react in the presence of a catalyst to form formaldehyde. In a parallel reaction, methane is oxidized to carb
Nezavi [6.7K]

Answer:

y_{CH_4}^2=\frac{5mol/s}{100mol/s}=0.05\\y_{O_2}^2=\frac{3mol/s}{100mol/s}=0.03\\y_{H_2O}^2=\frac{47mol/s}{100mol/s}=0.47\\y_{HCHO}^2=\frac{43mol/s}{100mol/s}=0.43\\y_{CO_2}^2=\frac{2mol/s}{100mol/s}=0.02

Explanation:

Hello,

a. On the attached document, you can see a brief scheme of the process. Thus, to know the degrees of freedom, we state the following unknowns:

- \xi_1 and \xi_2: extent of the reactions (2).

- F_{O_2}^2, F_{CH_4}^2, F_{H_2O}^2, F_{HCHO}^2 and F_{CO_2}^2: Molar flows at the second stream (5).

On the other hand, we've got the following equations:

- F_{O_2}^2=50mol/s-\xi_1-2\xi_2: oxygen mole balance.

- F_{CH_4}^2=50mol/s-\xi_1-\xi_2: methane mole balance.

- F_{H_2O}^2=\xi_1+2\xi_2: water mole balance.

- F_{HCHO}^2=\xi_1: formaldehyde mole balance.

- F_{CO_2}^2=\xi_2: carbon dioxide mole balance.

Thus, the degrees of freedom are:

DF=7unknowns-5equations=2

It means that we need two additional equations or data to solve the problem.

b. Here, the two missing data are given. For the fractional conversion of methane, we define:

0.900=\frac{\xi_1+\xi_2}{50mol/s}

And for the fractional yield of formaldehyde we can set it in terms of methane as the reagents are equimolar:

0.860=\frac{F_{HCHO}^2}{50mol/s}

In such a way, one realizes that the output formaldehyde's molar flow is:

F_{HCHO}^2=0.860*50mol/s=43mol/s

Which is equal to the first reaction extent \xi_1, therefore, one computes the second one from the fractional conversion of methane as:

\xi_2=0.900*50mol/s-\xi_1\\\xi_2=0.900*50mol/s-43mol/s\\\xi_2=2mol/s

Now, one computes the rest of the output flows via:

- F_{O_2}^2=50mol/s-43mol/s-2*2mol/s=3mol/s

- F_{CH_4}^2=50mol/s-43mol/s-2mol/s=5mol/s

- F_{H_2O}^2=43mol/s+2*2mol/s=47mol/s

- F_{HCHO}^2=43mol/s

- F_{CO_2}^2=2mol/s

The total output molar flow is:

F_{O_2}+F_{CH_4}+F_{H_2O}+F_{HCHO}+F_{CO_2}=100mol/s

Therefore the output stream composition turns out into:

y_{CH_4}^2=\frac{5mol/s}{100mol/s}=0.05\\y_{O_2}^2=\frac{3mol/s}{100mol/s}=0.03\\y_{H_2O}^2=\frac{47mol/s}{100mol/s}=0.47\\y_{HCHO}^2=\frac{43mol/s}{100mol/s}=0.43\\y_{CO_2}^2=\frac{2mol/s}{100mol/s}=0.02

Best regards.

7 0
3 years ago
Water at 15°C is to be discharged from a reservoir at a rate of 18 L/s using two horizontal cast iron pipes connected in series
love history [14]

Answer:

The required pumping head is 1344.55 m and the pumping power is 236.96 kW

Explanation:

The energy equation is equal to:

\frac{P_{1} }{\gamma } +\frac{V_{1}^{2}  }{2g} +z_{1} =\frac{P_{2} }{\gamma } +\frac{V_{2}^{2}  }{2g} +z_{2}+h_{i} -h_{pump} , if V_{1} =0,z_{2} =0\\h_{pump} =\frac{V_{2}^{2}}{2} +h_{i}-z_{1}

For the pipe 1, the flow velocity is:

V_{1} =\frac{Q}{\frac{\pi D^{2} }{4} }

Q = 18 L/s = 0.018 m³/s

D = 6 cm = 0.06 m

V_{1} =\frac{0.018}{\frac{\pi *0.06^{2} }{4} } =6.366m/s

The Reynold´s number is:

Re=\frac{\rho *V*D}{u} =\frac{999.1*6.366*0.06}{1.138x10^{-3} } =335339.4

\frac{\epsilon }{D} =\frac{0.00026}{0.06} =0.0043

Using the graph of Moody, I will select the f value at 0.0043 and 335339.4, as 0.02941

The head of pipe 1 is:

h_{1} =\frac{V_{1}^{2}  }{2g} (k_{L}+\frac{fL}{D}  )=\frac{6.366^{2} }{2*9.8} *(0.5+\frac{0.0294*20}{0.06} )=21.3m

For the pipe 2, the flow velocity is:

V_{2} =\frac{0.018}{\frac{\pi *0.03^{2} }{4} } =25.46m/s

The Reynold´s number is:

Re=\frac{\rho *V*D}{u} =\frac{999.1*25.46*0.03}{1.138x10^{-3} } =670573.4

\frac{\epsilon }{D} =\frac{0.00026}{0.03} =0.0087

The head of pipe 1 is:

h_{2} =\frac{V_{2}^{2}  }{2g} (k_{L}+\frac{fL}{D}  )=\frac{25.46^{2} }{2*9.8} *(0.5+\frac{0.033*36}{0.03} )=1326.18m

The total head is:

hi = 1326.18 + 21.3 = 1347.48 m

The required pump head is:

h_{pump} =\frac{25.46^{2} }{2*9.8} +1347.48-36=1344.55m

The required pumping power is:

P=Q\rho *g*h_{pump}  =0.018*999.1*9.8*1344.55=236965.16W=236.96kW

8 0
3 years ago
What are the success factors for mechanical engineering?
Eva8 [605]

Answer:

-effective technical skills.

-the ability to work under pressure.

-problem-solving skills.

-creativity.

-interpersonal skills.

-verbal and written communication skills.

-commercial awareness.

-teamworking skills.

Explanation:

is this what ur looking for? if so there ya go lol

7 0
3 years ago
Read 2 more answers
The status of which of these determines the sequence in which output devices, such as solenoid values and motor contactors, are
Mkey [24]
A. Physical I/O sensors

Safety switches, operator inputs, travel limit switches etc
5 0
3 years ago
Example – a 100 kW, 60 Hz, 1175 rpm motor is coupled to a flywheel through a gearbox • the kinetic energy of the revolving compo
rjkz [21]

Answer:

1200KJ

Explanation:

The heat dissipated in the rotor while coming down from its running speed to zero, is equal to three times its running kinetic energy.

P (rotor-loss) = 3 x K.E

P = 3 x 300 = 900 KJ

After coming to zero, the motor again goes back to running speed of 1175 rpm but in opposite direction. The KE in this case would be;

KE = 300 KJ

Since it is in opposite direction, it will also add up to rotor loss

P ( rotor loss ) = 900 + 300 = 1200 KJ

7 0
3 years ago
Other questions:
  • More discussion about seriesConnect(Ohm) function In your main(), first, construct the first circuit object, called ckt1, using
    10·1 answer
  • A water jet jump involves a jet cross-sectional area of 0.01 m2 , and a jet velocity of 30 m/s. The jet is surrounded by entrain
    6·1 answer
  • Thermosetting polymers are polymers that becomes soft and pliable when heated. ( True , False )
    8·2 answers
  • Sadadasdasdasdasdadaaasd1
    14·1 answer
  • A certain metal has a resistivity of 1.68 × 10-8 Ω ∙ m. You have a long spool of wire made from this metal. If this wire has a d
    14·1 answer
  • The ampere draw of a 5000 watt electric heater used on 120 volts is
    12·1 answer
  • Hi, can anyone draw me an isometric image of this shape?​
    7·2 answers
  • Dndbgddbdbhfdhdhdhhfhffhfhhddhhdhdhdhdhd​
    11·2 answers
  • For many people in 3D modeling copyrights and licensing allow them to earn a living.
    12·1 answer
  • What factors need to be considered when building housing on a waterway
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!