Answer:
C. Carbon dioxide
Explanation:
Carbon dioxide is one of the end-product of combustion reactions involving many fuels today.
With the rapid increase in urbanization and technological development, man demand for energy increased tremendously. The discovery of fossil fuels paved the way for the astronomical increase in the concentration of carbon dioxide in the atmosphere. The burning of fossil fuels like coal and oil invovles the process where the carbon atoms present in these fuels combine with oxygen in the air to make CO2. This has resulted in an increase in the concentration of atmospheric carbon dioxide (CO2).
The burning fossil fuels for electricity, industry, heat, and transportation are the major sources of the emossion of carbon dioxide.
Also, the cutting down of trees for paper production, building construction and for the establishment of settlements also increase the concentration of carbon dioxide in the atmosphere. Trees are help remove carbon dioxide from the atmosphere through the process of photosynthesis. However, when these trees are cut down, carbon dioxide accumulates in the atmosphere.
Answer:
HNO₂
Explanation:
An acid is a proton donor; a base is a proton acceptor.
Thus, NO₂⁻ is the base, because it accepts a proton from the water.
H₂O is the acid, because it donates a proton to the nitrite ion.
The conjugate base is what's left after the acid has given up its proton.
The conjugate acid is what's formed when the base has accepted a proton.
NO₂⁻/HNO₂ make one conjugate acid/base pair, and H₂O/OH⁻ are the other conjugate acid/base pair.
NO₂⁻ + H₂O ⇌ HNO₂ + OH⁻
base acid conj. conj.
acid base
Answer:
No.of moles of C is , n = mass/molar mass = 75.46 g / 12 (g/mol) = 6.3 moles No.of moles of H is , n' = mass/molar mass = 4.43 g / 1.0(g/mol) = 4.43 moles No.of moles of O is , n'' = mass/molar mass = 20.10 g / 16(g/mol) =1.25 moles Ratio to the no.of moles of C,H& O is 6.3 : 4.43 : 1.25 In the simple integer ratio is ( 6.3/1.25) : ( 4.43/1.25) : (1.25/1.25) 5.04 :3.5 : 1
Explanation:
<span>Carrying capacity is the number of organisms an ecosystem can support. It is the maximum size of a population that can survive in the ecosystem. If the animals reach the carrying capacity, the population may crash. As the consequence, the number of animals will decrease due to predators or diseases.</span>