AgF consists of Ag+ and F- ions, which are fully dissociated in aqueous solution. When solving electrolysis problems, it is important to remember that water itself may also be a subject to electrolysis. Therefore, determining which species is oxidized and which species is reduced depends on selecting the processes that are the most energetically favorable. The most preferred reduction reaction will be Ag+ + e- = Ag (Emf=0.7996 V) which will occur at the cathode, on the other hand, the most favorable oxidation reaction will be
2H2O = O2 +4H+ + 4e- (Emf = -1.3 V) that will occur at the anode. Thus, the product at the anode is oxygen gas and at the cathode electrode is silver metal.
<span>PV = nRT
(4000 Torr)(5 L) = n (62.4 Torr-L/mol-K)(296K)
n = 1.08 moles
28 g/mol, 1.08 moles = 30.3 grams
your answer is
C.30.3 g</span>
Answer:
she should not have multiplied the sulfur atoms by the subscript 4
Explanation:
Answer:
9.1 mol
Explanation:
The balanced chemical equation of the reaction is:
CO (g) + 2H2 (g) → CH3OH (l)
According to the above balanced equation, 2 moles of hydrogen gas (H2) are needed to produce 1 mole of methanol (CH3OH).
To convert 36.7 g of hydrogen gas to moles, we use the formula;
mole = mass/molar mass
Molar mass of H2 = 2.02g/mol
mole = 36.7/2.02
mole = 18.17mol
This means that if;
2 moles of H2 reacts to produce 1 mole of CH3OH
18.17mol of H2 will react to produce;
18.17 × 1 / 2
= 18.17/2
= 9.085
Approximately to 1 d.p = 9.1 mol of methanol (CH3OH).
Astatine. Because it has the smaller shell of electrons. I believe