Think of the formula force=mass x acceleration. even though they have the same acceleration, a train has more mass. is that helpful?
The maximum speed of the object under simple harmonic motion is 0.786 m/s.
The given parameters:
- Position of the particle, y = 0.5m sin(πt/2)
<h3>Wave equation for
simple harmonic motion;</h3>
y = A sin(ωt + Ф)
where;
- A is the amplitude = 0.5 m
- ω is the angular speed = π/2
The maximum speed of the object is calculated as follows;

Thus, the maximum speed of the object under simple harmonic motion is 0.786 m/s.
Learn more about simple harmonic motion here: brainly.com/question/17315536
Answer:
7.2 as used in the equation
The time of motion of the track star is determined as 0.837 s.
<h3>Time of motion of the track star</h3>
The time of motion of the track star is calculated as follows;
T = (2u sinθ)/g
where;
- T is time of motion
- g is acceleration due to gravity
- θ is angle of projection
T = (2 x 12 x sin20)/9.8
T = 0.837 s
Learn more about time of motion here: brainly.com/question/2364404
#SPJ1
Answer:
time required after impact for a puck is 2.18 seconds
Explanation:
given data
mass = 30 g = 0.03 kg
diameter = 100 mm = 0.1 m
thick = 0.1 mm = 1 ×
m
dynamic viscosity = 1.75 ×
Ns/m²
air temperature = 15°C
to find out
time required after impact for a puck to lose 10%
solution
we know velocity varies here 0 to v
we consider here initial velocity = v
so final velocity = 0.9v
so change in velocity is du = v
and clearance dy = h
and shear stress acting on surface is here express as
= µ 
so
= µ
............1
put here value
= 1.75×
× 
= 0.175 v
and
area between air and puck is given by
Area =
area =
area = 7.85 ×
m²
so
force on puck is express as
Force = × area
force = 0.175 v × 7.85 × 
force = 1.374 ×
v
and now apply newton second law
force = mass × acceleration
- force = 
- 1.374 ×
v = 
t = 
time = 2.18
so time required after impact for a puck is 2.18 seconds