Answer:
a = 0.55 m/s/s
Explanation:
As the car accelerates in forward direction the string will make some angle with the vertical direction
So here horizontal component of the tension force will accelerates the dice in forward direction along with the car
Vertical component of the tension force will balance the weight of the dice
so we will have


here we know that
= angle made with the vertical by string
now divide the two equations

so we have



Answer:
Δd = 7.22 10⁻² m
Explanation:
For this exercise we must use the dispersion relationship of a diffraction grating
d sin θ = m λ
let's use trigonometry
tan θ = y / L
how the angles are small
tant θ = sinθ /cos θ = sin θ
we substitute
sin θ = y / L
d y / L = m λ
y = m λ L / d
let's use direct ruler rule to find the distance between two slits
If there are 500 lines in 1 me, what distance is there between two lines
d = 2/500
d = 0.004 me = 4 10⁻⁶ m
diffraction gratings are built so that most of the energy is in the first order of diffraction m = 1
let's calculate for each wavelength
λ = 656 nm = 656 10⁻⁹ m
d₁ = 1 656 10⁻⁹ 1.7 / 4 10⁻⁶
d₁ = 2.788 10⁻¹ m
λ = 486 nm = 486 10⁻⁹ m
d₂ = 1 486 10⁻⁹ 1.7 / 4 10⁻⁶
d₂ = 2.066 10⁻¹ m
the distance between the two lines is
Δd = d1 -d2
Δd = (2,788 - 2,066) 10⁻¹
Δd = 7.22 10⁻² m
(1) The ball is in the air for <u>1.4 seconds.</u>
(2) The horizontal velocity of the ball as it rolls off the table is<u> 6.32 m/s.</u>
(3) The vertical velocity of the ball right before it hits the ground is <u>13.72 m/s.</u>
(4) The horizontal velocity of the ball right before it hits the ground is<u> 6.32 m/s.</u>
(5) The initial vertical velocity as soon as the ball comes of the cliff is <u>13.72 m/s.</u>
<h3>What is the time of motion of the ball?</h3>
The time of motion of the ball is calculated by applying the following equation.
t = √(2h/g)
where;
- h is the height of the cliff
- g is acceleration due to gravity
t = √(2h/g)
t = √(2 x 9.63 / 9.8)
t = 1.4 seconds
The horizontal velocity of the ball is calculated as follows;
v = d/t
where;
- d is the horizontal distance travelled by the ball = 8.85 m
v = 8.85 m / 1.4 s
v = 6.32 m/s
The vertical velocity of the ball before it hits the ground is calculated as;
vf = vi + gt
vf = 0 + 9.8 x 1.4
vf = 13.72 m/s
The horizontal velocity of the ball right before it hits the ground is calculated as;
the initial velocity of a projectile = final horizontal velocity
vxf = vxi = 6.32 m/s
The initial vertical velocity as soon as the ball comes off the cliff = final vertical velocity = 13.72 m/s
Learn more about horizontal velocity here: brainly.com/question/24949996
#SPJ1
Answer:
<em>SI Units</em>
Meter
Kilogram
Kelvin
<em>US Customary Units and English Units</em>
Gallon
Mile
Pound
Degrees Fahrenheit
Explanation:
The SI units or International System of Units are the widely used metrics of measuring a physical quantity. It has specific abbreviations.
The US customary units is a measurement system where it is widely used in the united states. This system of unit also has abbreviations.
There are also conversion scales that are used to convert a unit from one metric system to the other.
For example, the conversion of mile to SI unit is given by the formula
1 mile = 1609.4 meters
Similarly,
1 pound = 0.453592 Kg
Answer:
0.5 , 54.5
Explanation:
for acceleration we should derivate the equation 2 times
x=3t³+t²/4
v=9t²+t/2
a=18t+1/2
a(0)=0.5
a(3)=54.5