Answer:
The condition necessary for the person to be able to remain stationary in mid-air is that there must be an upward force also referred to as THRUST
Explanation:
Thrust in Physics is defined as the force that propels, forces or pushes the mass of a certain object in a specified or particular direction.
Thrust can defined in the terms of a Jet pack can be defined as the force that is required to propel the mass of a person in an upward direction.
Based on the diagram that we have been shown the question, we can see that water is the fuel used to proper the user or person upwards hence, the jet pack used in the question is an HydroJet pack
The condition necessary for the person to be able to remain stationary in mid-air is that the propelling force called the thrust must be upwards such that it can overcome these 4 things:
a) Gravitational force
b) Mass of the jet pack user
c) Mass of the jet pack itself
d) The water which serves as fuel for the jet pack.
Frequency= velocity of light/wave length
Fr= 3×10^8/510×10^-9
Frequwency=5.88×10^14 Hz
Answer:
To calculate the tension on a rope holding 1 object, multiply the mass and gravitational acceleration of the object. If the object is experiencing any other acceleration, multiply that acceleration by the mass and add it to your first total.
Explanation:
The tension in a given strand of string or rope is a result of the forces pulling on the rope from either end. As a reminder, force = mass × acceleration. Assuming the rope is stretched tightly, any change in acceleration or mass in objects the rope is supporting will cause a change in tension in the rope. Don't forget the constant acceleration due to gravity - even if a system is at rest, its components are subject to this force. We can think of a tension in a given rope as T = (m × g) + (m × a), where "g" is the acceleration due to gravity of any objects the rope is supporting and "a" is any other acceleration on any objects the rope is supporting.[2]
For the purposes of most physics problems, we assume ideal strings - in other words, that our rope, cable, etc. is thin, massless, and can't be stretched or broken.
As an example, let's consider a system where a weight hangs from a wooden beam via a single rope (see picture). Neither the weight nor the rope are moving - the entire system is at rest. Because of this, we know that, for the weight to be held in equilibrium, the tension force must equal the force of gravity on the weight. In other words, Tension (Ft) = Force of gravity (Fg) = m × g.
Assuming a 10 kg weight, then, the tension force is 10 kg × 9.8 m/s2 = 98 Newtons.
Explanation:
To determine your total daily calorie needs, multiply your BMR by the appropriate activity factor, as follows: If you are sedentary (little or no exercise) : Calorie-Calculation = BMR x 1.2. If you are lightly active (light exercise/sports 1-3 days/week) : Calorie-Calculation = BMR x 1.375.
<em><u>HAPPY TO HELP</u></em>