Answer:
the answer would be Halogens
Answer:
depends on how you look at it. It means that they either think your fat and your shirt is too small or that your being too revealing and need to cover up your stomach.
Explanation:
Once before a guy got mad at me because of the same reason but it was only because he cared for my privacy and protection :)
1. It is something we don't have to worry about ever losing.
2. We can use quite a bit of it.
3. Renewable energy saves us from wasting non reusable energy
4. We have something to use when we run out of non reusable energy
5. The energy is is helpful with everyday things.
Answer:
The hydrogen produces the smaller amount of ammonia.
Step-by-step explanation:
We are given the masses of two reactants, so this is a <em>limiting reactant problem</em>.
We know we will need a balanced equation with masses and molar masses, so let’s gather all the information in one place.
M_r: 28.02 2.016 17.03
N₂ + 3H₂ ⟶ 2NH₃
Mass/g: 70.0 7.00
1. Calculate the moles of N₂ and H₂
Moles N₂ = 70.0 × 1/28.02
Moles N₂ = 2.498 mol N₂
Moles H₂ = 7.00 × 2.016
Moles H₂ = 3.472 mol N₂
=====
2. Calculate the moles of NH₃ from each reactant
<em>From</em> N₂:
The molar ratio is 2 mol NH₃/1 mol N₂
Moles of NH₃ = 2.498 × 2/1
Moles of NH₃ = 4.996 mol NH₃
<em>From</em> H₂:
The molar ratio is 2 mol NH₃/3 mol H₂
Moles of NH₃ = 3.472 × 2/3
Moles of NH₃ = 4.139 mol NH₃
======
3. Identify the limiting reactant
The limiting reactant is H₂, because it produces fewer moles of NH₃.
Answer:
85.6 g
Explanation:
Step 1: Write the balanced combustion equation
C₃H₈ + 5 O₂ ⇒ 3 CO₂ + 4 H₂O
Step 2: Calculate the moles corresponding to 140 g of H₂O
The molar mass of H₂O is 18.02 g/mol.
140 g × 1 mol/18.02 g = 7.77 mol
Step 3: Calculate the moles of C₃H₈ needed to produce 7.77 moles of H₂O
The molar ratio of C₃H₈ to H₂O is 1:4. The moles of C₃H₈ needed are 1/4 × 7.77 mol = 1.94 mol.
Step 4: Calculate the mass corresponding to 1.94 moles of C₃H₈
The molar mass of C₃H₈ is 44.10 g/mol.
1.94 mol × 44.10 g/mol = 85.6 g