Answer: The concentrations of
at equilibrium is 0.023 M
Explanation:
Moles of
= 
Volume of solution = 1 L
Initial concentration of
= 
The given balanced equilibrium reaction is,

Initial conc. 0.14 M 0 M 0M
At eqm. conc. (0.14-x) M (x) M (x) M
The expression for equilibrium constant for this reaction will be,
![K_c=\frac{[CO]\times [Cl_2]}{[COCl_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BCO%5D%5Ctimes%20%5BCl_2%5D%7D%7B%5BCOCl_2%5D%7D)
Now put all the given values in this expression, we get :

By solving the term 'x', we get :
x = 0.023 M
Thus, the concentrations of
at equilibrium is 0.023 M
Zeff is the effective nuclear charge wherein, Z resembles the number of protons in the nucleus while S corresponds to the number of non-valence electrons.
Zeff = Z - S
Silicon has 14 protons; its electron configuration is [Ne] 3s2 3p2. Its
non-valence electrons is in the n = 1 and n =2 shells. There are 2
electrons in n = 1 and 8 in n = 2, so there are a total of 10
non-valence electron.
<span><span>Z<span>eff</span></span>= 14−10= 4</span>
So, the answer is 4.
Answer:
B.
Explanation: hope this helps
Benzene
Answer:
The nitrile group
Explanation:
The nitrile group contains the C≡N bond. It should be recalled that triple bond is highly electronegative and withdraws electrons from the C-H bond more effectively than the halogen atom.
The higher effectiveness of the C≡N bond at electron withdrawal greatly reduces the electron density of the C-H bond thereby making the hydrogen atom of the bond highly labile
A gauge records the pressure over atmospheric pressure (0kpa on the gauge is actually the atmospheric pressure and a reading of 276kpa is 276kpa over atmospheric pressure). That means that means that to find absolute pressure you just add atmospheric pressure (around 1atm (101kpa)) to 286kpa to get 387kpa. I hope this helps.