Answer: 48800g
Explanation:
Using the mathematical relation : Moles = Mass / Molar Mass
Moles = 488
Molar mass of CaCO3 = 40 + 12 + (16 x 3) = 100g/mol
Therefore
488 = mass / 100 = 48800g
The amount of the 240 g sample of the radioisotope that will remain after 525 billion years is 7.5 g
<h3>How to the number of half-lives that has elapsed</h3>
- Half-life (t½) = 105 billion years
- Time (t) = 525 billion years
- Number of half-lives (n) = ?
n = t / t½
n = 525 / 105
n = 5
<h3>How to determine the amount remaining</h3>
- Original amount (N₀) = 240 g
- Number of half-lives (n) = 5
- Amount remaining (N) = ?
N = N₀ / 2ⁿ
N = 240 / 2⁵
N = 240 / 32
N = 7.5 g
Learn more about half life:
brainly.com/question/26374513
#SPJ4
Hello Mate!Well, there are
many definitions and descriptions of isolated systems, and
here are some of them:
1.
It can be a physical system which is located very very far from all other systems, so there is absolutely no interaction between them, thus making it isolated.
2.
It can be a thermodynamic system with rigid walls, which prevents mass and energy to pass through.
I Hope my answer has come to your Help. Thank you for posting your question here in

We hope to answer more of your questions and inquiries soon.
Have a nice day ahead! :)
