Answer:
A volume of a cubic meter of water from the surface of the lake has been compressed in 0.004 cubic meters.
Explanation:
The bulk modulus is represented by the following differential equation:

Where:
- Bulk module, measured in pascals.
- Sample volume, measured in cubic meters.
- Local pressure, measured in pascals.
Now, let suppose that bulk remains constant, so that differential equation can be reduced into a first-order linear non-homogeneous differential equation with separable variables:

This resultant expression is solved by definite integration and algebraic handling:




The final volume is predicted by:

If
,
and
, then:


Change in volume due to increasure on pressure is:



A volume of a cubic meter of water from the surface of the lake has been compressed in 0.004 cubic meters.
Answer:
The current through the inductor at the end of 2.60s is 9.7 mA.
Explanation:
Given;
emf of the inductor, V = 41.0 mV
inductance of the inductor, L = 13 H
initial current in the inductor, I₀ = 1.5 mA
change in time, Δt = 2.6 s
The emf of the inductor is given by;

Therefore, the current through the inductor at the end of 2.60 s is 9.7 mA.
Answer:
The car's angular speed is
.
Explanation:
Angular velocity is usually measured with
, so I'm going to use that to answer your question.
The relationship between tangential velocity and angular velocity (ω) is given by:

Using the values from the question, we get:


Therefore, the car's angular speed is
.
Hope this helped!
Explanation:
a. Net force is mass times acceleration (Newton's second law).
∑F = ma
∑F = (5.0 kg) (2.0 m/s²)
∑F = 10 N
b. The net force is the sum of the individual forces.
10 N = F − 5 N
F = 15 N
c. Friction force here is mgμ.
mgμ = 5 N
(5.0 kg) (10 m/s) μ = 5 N
μ = 0.1
Answer:
D
Explanation:
because if the solvent is more than the solvent then we can't resolve it.
so our product will be suspended