Answer:
there are 6 significant figures in 107.051
The volume of 0.160 m Li2S solution required to completely react with 130 ml of 0.160 CO(NO3)2 is calculated as below
write the reacting equation
Co(NO3)2 + Li2S = 2LiNO3 + COS
find the moles of CO(NO3)2 = molarity x volume
= 130 ml x 0.160=20.8 moles
since the reacting moles between CO(NO3)2 to LiS is 1:1 the moles of LiS is also 20.8 moles
volume of Lis is therefore = moles of Lis/ molarity of LiS
= 20.8/0.160 = 130 Ml
Answer:

Explanation:
Ag₂CO₃(s) ⇌2Ag⁺(aq) + CO₃²⁻(aq); Ksp = 8.10 × 10⁻¹²
2x 0.007 50 + x
![K_{sp} =\text{[Ag$^{+}$]$^{2}$[CO$_{3}^{2-}$]} = (2x)^{2}\times 0.00750 = 8.10 \times 10^{-12}\\0.0300x^{2} = 8.10 \times 10^{-12}\\x^{2} = 2.70 \times 10^{-10}\\x = \sqrt{2.70 \times 10^{-10}} = \mathbf{1.64\times 10^{5}} \textbf{ mol/L}\\\text{The maximum concentration of Ag$^{+}$ is $\large \boxed{\mathbf{1.64\times 10^{-5}}\textbf{ mol/L }}$}](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%5Ctext%7B%5BAg%24%5E%7B%2B%7D%24%5D%24%5E%7B2%7D%24%5BCO%24_%7B3%7D%5E%7B2-%7D%24%5D%7D%20%3D%20%282x%29%5E%7B2%7D%5Ctimes%200.00750%20%3D%208.10%20%5Ctimes%2010%5E%7B-12%7D%5C%5C0.0300x%5E%7B2%7D%20%3D%208.10%20%5Ctimes%2010%5E%7B-12%7D%5C%5Cx%5E%7B2%7D%20%3D%202.70%20%5Ctimes%2010%5E%7B-10%7D%5C%5Cx%20%3D%20%5Csqrt%7B2.70%20%5Ctimes%2010%5E%7B-10%7D%7D%20%3D%20%5Cmathbf%7B1.64%5Ctimes%2010%5E%7B5%7D%7D%20%5Ctextbf%7B%20mol%2FL%7D%5C%5C%5Ctext%7BThe%20maximum%20concentration%20of%20Ag%24%5E%7B%2B%7D%24%20is%20%24%5Clarge%20%5Cboxed%7B%5Cmathbf%7B1.64%5Ctimes%2010%5E%7B-5%7D%7D%5Ctextbf%7B%20mol%2FL%20%7D%7D%24%7D)
Answer:
6. O₂ + Cu —> CuO
7. H₂ + Fe₂O₃ —> H₂O + Fe
8. O₂ + H₂ — > H₂O
9. H₂S + NaOH —> Na₂S + H₂O
10. Al + HCl —> H₂ + AlCl₃
Explanation:
6. Oxygen gas react with solid copper metal to form copper(II) oxide
Oxygen gas => O₂
Copper => Cu
copper(II) oxide => CuO
The equation is:
O₂ + Cu —> CuO
7. hydrogen gas and iron(III) oxide powder react to form liquid water and solid iron power
hydrogen gas => H₂
Iron(III) oxide => Fe₂O₃
Water => H₂O
Iron => Fe
The equation is:
H₂ + Fe₂O₃ —> H₂O + Fe
8. Oxygen gas react with hydrogen gas to form liquid water
Oxygen gas => O₂
hydrogen gas => H₂
Water => H₂O
The equation is:
O₂ + H₂ — > H₂O
9. Hydrogen sulphide gas is bubbled through a sodium hydroxide solution to produce sodium sulphide and liquid water
hydrogen sulphide => H₂S
sodium hydroxide => NaOH
Sodium sulphide => Na₂S
Water => H₂O
The equation is:
H₂S + NaOH —> Na₂S + H₂O
10. Hydrogen gas and aluminum chloride solutions are produced when solid aluminum react with hydrochloric acid
Aluminum => Al
Hydrochloric acid => HCl
hydrogen gas => H₂
Aluminum chloride => AlCl₃
The equation is:
Al + HCl —> H₂ + AlCl₃