Answer:
Moon rocks contain few volatile substances (e.g. water), which implies extra baking of the lunar surface relative to that of Earth. The relative abundance of oxygen isotopes on Earth and on the Moon are identical, which suggests that the Earth and Moon formed at the same distance from the Sun.
Explanation:
Answer:
1st Blank: <em>1 Co</em>
2nd Blank:<em> 2 Na2S</em>
3rd Blank:<em> 4 Na</em>
4th Blank:<em> 1 CoS2</em>
Explanation:
<em>Trust me</em>
You need to find moles of the gas, so you would use the ideal gas law:
PV=nRT
Pressure
Volume
n=moles
R= gas constant
Tenperature in Kelvin
n= PV/RT
(1.00atm)(1.35L)/(.08206)(332K) = 0.050mol
Molar mass is grams per mole, so
(3.75g/.050mol) = 75g/mol
The answer is: Survival of the form that will leave the most copies of itself in successive generations.
"Survival of the fittest" is a phrase that originated from Darwinian evolutionary theory.
This is example of natural selection and adaptation.
Genetic variation is important to the population's ability to survive in different situations that affect natural selection.
The environment is constantly changing and different alleles are favored.
Answer:
ΔG°rxn = -69.0 kJ
Explanation:
Let's consider the following thermochemical equation.
N₂O(g) + NO₂(g) → 3 NO(g) ΔG°rxn = -23.0 kJ
Since ΔG°rxn < 0, this reaction is exergonic, that is, 23.0 kJ of energy are released. The Gibbs free energy is an extensive property, meaning that it depends on the amount of matter. Then, if we multiply the amount of matter by 3 (by multiplying the stoichiometric coefficients by 3), the ΔG°rxn will also be tripled.
3 N₂O(g) + 3 NO₂(g) → 9 NO(g) ΔG°rxn = -69.0 kJ