1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Katen [24]
3 years ago
5

Oil tends to float on water because the density of oil is _____ the density of water.

Physics
1 answer:
Rama09 [41]3 years ago
7 0
Oil is less dense than water so it tends to float on the top of the water. Hope this Helps!
You might be interested in
A foot player runs 1.6m/s and has a KE of 790 J. What is his mass?
Mariana [72]
The equation for kinetic energy is,

Ke = (1/2)mv^2.

You're given a kinetic energy of 790 joules, and a speed of 1.6 m/s. Plugging these values into the equation, we get,

790 = (1/2)(1.6)^2(m).

Solving for m, we get,

m = (790)/(0.5(1.6)^2).

I'll let you crunch out those numbers for yourself :D

If you have any questions, feel free to ask. Hope this helps!
3 0
3 years ago
Why is it advisable to wear long sleeves when a student works in a chemistry lab
love history [14]

So then if they do spill the chemical then it gets on their cloths and not on then it dosen"t harm them instead it ruins their shirt.

3 0
3 years ago
Read 2 more answers
What is the frequency if a wave that pases a given pount 22 times in 2 seconds
34kurt

The answer is B. 11 Hz

3 0
3 years ago
Ksp for agbr is 5x10-13. what is the maximum concentration of silver ion that you can have in a 0.1 m solution of nabr?
liberstina [14]

Answer : The maximum concentration of silver ion is 5\times 10^{-12}m

Solution : Given,

K_{sp} for AgBr = 5\times 10^{-13}

Concentration of NaBr solution = 0.1 m

The equilibrium reaction for NaBr solution is,

NaBr(aq)\rightleftharpoons Na^++Br^-

The concentration of NaBr solution is 0.1 m that means,

[Na^+]=[Br^-]=0.1m

The equilibrium reaction for AgBr is,

                          AgBr\rightleftharpoons Ag^++Br^-

At equilibrium                     s       s

The expression for solubility product constant for AgBr is,

K_{sp}=[Ag^+][Br^-]

The concentration of Ag^+ = s

The concentration of Br^- = 0.1 + s

Now put all the given values in K_{sp} expression, we get

5\times 10^{-13}=(s)(0.1+s)

By rearranging the terms, we get the value of 's'

s=5\times 10^{-12}m

Therefore, the maximum concentration of silver ion is 5\times 10^{-12}m.

4 0
3 years ago
Read 2 more answers
3. A football is kicked with a speed of 35 m/s at an angle of 40°.
jarptica [38.1K]

a) 22.5 m/s

The initial vertical velocity is given by:

u_y = u sin \theta

where

u = 35 m/s is the initial speed

\theta=40^{\circ} is the angle of projection of the ball

Substituting into the equation, we find

u_y = (35)(sin 40)=22.5 m/s

b) 26.8 m/s

The initial horizontal velocity is given by:

u_x = u cos \theta

where

u = 35 m/s is the initial speed

\theta=40^{\circ} is the angle of projection of the ball

Substituting into the equation, we find

u_x = (35)(cos 40)=26.8 m/s

c) 2.30 s

The time it takes for the ball to reach the maximum heigth can be found by considering the vertical motion only. This is a uniformly accelerated motion (free-fall), so we can use the suvat equation

v_y = u_y + at

where

v_y is the vertical velocity at time t

u_y = 22.5 m/s

a=g=-9.8 m/s^2 is the acceleration of gravity (negative because it is downward)

At the maximum height, the vertical velocity becomes zero, v_y =0; substituting, we find the time t at which this happens:

0=u_y + gt\\t=-\frac{u_y}{g}=-\frac{22.5}{-9.8}=2.30 s

d) 25.8 m

The maximum height can also be found by considering the vertical motion only. We can use the following suvat equation:

s=u_y t + \frac{1}{2}gt^2

where

s is the vertical displacement at time t

u_y = 22.5 m/s

g=-9.8 m/s^2

Substituting t = 2.30 s, we find the displacement at maximum height, so the maximum height:

s=(22.5)(2.30)+\frac{1}{2}(-9.8)(2.30)^2=25.8 m

e) 123.3 m

In order to find how far does the ball lands, we have to consider the horizontal motion.

First of all, the time it takes for the ball to go back to the ground is twice the time needed for reaching the maximum height:

t=2(2.30 s)=4.60 s

Then, we consider the horizontal motion. There is no acceleration along this direction, so the horizontal velocity is constant:

v_x = 26.8 m/s

Therefore, the horizontal distance travelled during the whole motion is

d=v_x t = (26.8)(4.60)=123.3 m

So, the ball lands 123.3 m far from the initial point.

4 0
3 years ago
Other questions:
  • An electric field of 260 000 n/c points due west at a certain spot. what are the magnitude and direction of the force that acts
    10·1 answer
  • How did tycho brahe's model of the universe differ from the greek geocentric model?
    15·1 answer
  • which of these waves requires a medium to travel through light wave electromagnetic waves sound wave microwave
    14·2 answers
  • The total magnification of a specimen being viewed with a 10X ocular lens and a 40X objective lens is _____.
    10·1 answer
  • In a standard gas grill propane tank, there is approximately 4,579 mL of propane (C3H8). At a temperature of 55˚C, the tank has
    9·1 answer
  • As the average kinetic energy of the particles in a gas increases, which of the following occurs?
    13·2 answers
  • An unknown number of identical light bulbs are connected to a 15 V battery in parallel. The current through the battery is 2 A.
    6·1 answer
  • Two gliders collide on an air track. Glider 1 has a mass of 7.0 kg, and glider 2 has a mass of 4.0 kg. Before the collision, gli
    10·1 answer
  • 1. Lauren’s SUV was detected exceeding the posted speed limit of 60 kilometers per hour, how many kilometers per hour would she
    14·1 answer
  • HELP ME PLEASEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!