Answer:
Anode: H₂(g) + 2 OH⁻(aq) → 2 H₂O(l) + 2 e⁻
Cathode: 2 Fe⁺³(aq) + 2 e⁻ → 2 Fe⁺²(aq)
E° = 1.60 V
Explanation:
Let's consider the reaction taking place in a galvanic cell.
2 Fe⁺³(aq) + H₂(g) + 2 OH⁻(aq) → 2 Fe⁺²(aq) + 2 H₂O(l)
The corresponding half-reactions are:
Anode (oxidation): H₂(g) + 2 OH⁻(aq) → 2 H₂O(l) + 2 e⁻ E°red = - 0.83 V
Cathode (reduction): 2 Fe⁺³(aq) + 2 e⁻ → 2 Fe⁺²(aq) E°red = 0.77 V
The standard cell potential (E°) is the difference between the standard reduction potential of the cathode and the standard reduction potential of the anode.
E° = E°red, cat - E°red, an = 0.77 V - (-0.83 V) = 1.60 V
Answer:
C
Explanation:
Melting point, temperature at which the solid and liquid forms of a pure substance can exist in equilibrium. As heat is applied to a solid, its temperature will increase until the melting point is reached. More heat then will convert the solid into a liquid with no temperature change.
The answer is: Survival of the form that will leave the most copies of itself in successive generations.
"Survival of the fittest" is a phrase that originated from Darwinian evolutionary theory.
This is example of natural selection and adaptation.
Genetic variation is important to the population's ability to survive in different situations that affect natural selection.
The environment is constantly changing and different alleles are favored.
Resonance or mesomerism is applicable to structures that cannot be formed with a single bond alone. Thus, for the structure of HCO2, there can be 2 resonance structures. In each structure, the formal charges are
C=0;
C=0
Oxygen=0
C-O=-1
H=0
HCO2-'s structure is a mixture of the two resonance structures. Hope this helps.
Answer:
Block Y is heavier than Block X.
Explanation: