Answer:
Condensation is the change of the physical state of matter from the gas phase into the liquid phase.
Answer:

Explanation:
The integrated rate law for radioactive decay is

1. Calculate the decay constant

2. Calculate the half-life

Answer:
the weather is raining sunning or rainbow
because of the sun its so hot
because its cold snowing
because the oceans is water you can swimming
Explanation:
that is
Spiral galaxies have three main components: a bulge, disk, and halo (see right). The bulge is a spherical structure found in the center of the galaxy. This feature mostly contains older stars. The disk is made up of dust, gas, and younger stars. The disk forms arm structures. Our Sun is located in an arm of our galaxy, the Milky Way. The halo of a galaxy is a loose, spherical structure located around the bulge and some of the disk. The halo contains old clusters of stars, known as globular clusters<span>.
</span><span>
Elliptical galaxies are shaped like a spheriod, or elongated sphere. In the sky, where we can only see two of their three dimensions, these galaxies look like elliptical, or oval, shaped disks. The light is smooth, with the surface brightness decreasing as you go farther out from the center. Elliptical galaxies are given a classification that corresponds to their elongation from a perfect circle, otherwise known as their ellipticity. The larger the number, the more elliptical the galaxy is. So, for example a galaxy of classification of E0 appears to be perfectly circular, while a classification of E7 is very flattened. The elliptical scale varies from E0 to E7. Elliptical galaxies have no particular axis of rotation.
</span>
Answer:
At equilibrium, the concentration of
is going to be 0.30M
Explanation:
We first need the reaction.
With the information given we can assume that is:
+
⇄ 2
If there is placed 0.600 moles of NO in a 1.0-L vessel, we have a initial concentration of 0.60 M NO; and no
nor
present. Immediately,
and
are going to be produced until equilibrium is reached.
By the ICE (initial, change, equilibrium) analysis:
I: [
]=0 ; [
]= 0 ; [
]=0.60M
C: [
]=+x ; [
]= +x ; [
]=-2x
E: [
]=0+x ; [
]= 0+x ; [
]=0.60-2x
Now we can use the constant information:
![K_{c}=\frac{[products]^{stoichiometric coefficient} }{[reactants]^{stoichiometric coefficient} }](https://tex.z-dn.net/?f=K_%7Bc%7D%3D%5Cfrac%7B%5Bproducts%5D%5E%7Bstoichiometric%20coefficient%7D%20%7D%7B%5Breactants%5D%5E%7Bstoichiometric%20coefficient%7D%20%7D)
= 
= 
= 




At equilibrium, the concentration of
is going to be 0.30M