yes, because you have to observe your experiment while doing it in case something goes wrong
Answer: vf = 51 m/s
d = 112 m
Explanation: Solution attached:
To find vf we use acceleration equation:
a = vf - vi / t
Derive to find vf
vf = at + vi
Substitute the values
vf = 3.5 m/s² ( 8.0 s) + 23 m/s
= 51 m/s
To solve for distance we use
d = (∆v)² / 2a
= (51 m/s - 23 m/s )² / 2 ( 3.5 m/s²)
= (28 m/s)² / 7 m/s²
= 784 m/s / 7 m/s²
= 112 m
Within the system of the same star, the period of a planet's orbit is
proportional to the 3/2 power of its distance from the central body.
(Kepler's empirical third law of planetary motion, promoted to being
etched in stone by Newton's gravitation.)
(4) ^ 3/2 = <em>8 times</em> as long.
Answer:
Explanation:
Given
initial height 

coefficient of static friction 
When collision is elastic respective velocities after collision is


where
and
=initial velocities of object
and
final velocities of object




using 


(b)Completely Inelastic
In Completely Inelastic objects stick with each other


using 

A pendulum is probably the most common showing of this example. As the pendulum swings down, it converts its potential energy (height) into kinetic energy (velocity). At the lowest point the kinetic energy is the highest and the potential is the lowest. At the highest point in its swing the velocity is zero so the kinetic energy is zero and the potential energy is at a maximum (greatest height).