Given Information:
Pendulum 1 mass = m₁ = 0.2 kg
Pendulum 2 mass = m₂ = 0.6 kg
Pendulum 1 length = L₁ = 5 m
Pendulum 2 length = L₂ = 1 m
Required Information:
Affect of mass on the frequency of the pendulum = ?
Answer:
The mass of the ball will not affect the frequency of the pendulum.
Explanation:
The relation between period and frequency of pendulum is given by
f = 1/T
The period of pendulum is given by
T = 2π√(L/g)
Where g is the acceleration due to gravity and L is the length of the string
As you can see the period (and frequency too) of pendulum is independent of the mass of the pendulum. Therefore, the mass of the ball will not affect the frequency of the pendulum.
Bonus:
Pendulum 1:
T₁ = 2π√(L₁/g)
T₁ = 2π√(5/9.8)
T₁ = 4.49 s
f₁ = 1/T₁
f₁ = 1/4.49
f₁ = 0.22 Hz
Pendulum 2:
T₂ = 2π√(L₂/g)
T₂ = 2π√(1/9.8)
T₂ = 2.0 s
f₂ = 1/T₂
f₂ = 1/2.0
f₂ = 0.5 Hz
So we can conclude that the higher length of the string increases the period of the pendulum and decreases the frequency of the pendulum.
A study occasionally the effect of anxiety (low vs. high) and stress (low vs. moderate vs. high) on test.
Everyone experiences anxiety occasionally, but persistent anxiety can reduce your quality of life. Though likely best known for altering behavior, worry can have negative effects on our physical health. Anxiety speeds up our heartbeat and breathing, concentrating blood flow to the parts of our brains that need it. You are getting ready for a challenging situation by having this extremely bodily reaction. Test performance may be impacted by anxiety. According to studies, pupils with low levels of test anxiety perform better on multiple-choice question (MCQ) exams than pupils with high levels of anxiety. Studies have occasionally that female students have greater levels of test anxiety than male students.
Learn more about anxiety here:
brainly.com/question/4913240
#SPJ4
it would be C laminated soda lime glass
The reciprocal of the total resistance is equal to the sum of the reciprocals of the component resistances:
1/(120.7 Ω) = 1/<em>R₁</em> + 1/(221.0 Ω)
1/<em>R₁</em> = 1/(120.7 Ω) - 1/(221.0 Ω)
<em>R₁</em> = 1 / (1/(120.7 Ω) - 1/(221.0 Ω)) ≈ 265.9 Ω
Answer:
is 3 and 2
Explanation: the firth one is 3 and the 2