Answer:
35.35 m
Explanation:
The following data were obtained from the question:
Initial velocity (u) = 20 m/s
Angle of projection (θ) = 30°
Acceleration due to gravity (g) = 9.8 m/s²
Range (R) =.?
The range (i.e how far away) of the ball can be obtained as follow:
R = u² Sine 2θ /g
R = 20² Sine (2×30) / 9.8
R = 400 Sine 60 / 9.8
R = (400 × 0866) / 9.8
R = 346.4 / 9.8
R = 35.35 m
Therefore, the range (i.e how far away) of the ball is 35.35 m
Answer:
C/100 = (F-32) / 180
or, C/5 = (F-32)/9
Explanation:
relation between any two scales is given by:
(X- lower fixed point ) / (upper fixed point -lower fixed point)
where X is any temperature
Generally, rings form from moons, asteroids, or comets that have disintegrated due to a collision or because they got too close to their planet (Roche Limit). ... Most of the debris, however, will not have enough energy to overcome the planet's gravity and will remain in orbit around the planet.
Answer:
The natural medium emanating from the Sun and other very hot sources (now recognised as electromagnetic radiation with a wavelength of 400-750 nm), within which vision is possible.
Explanation:
just the way it is
Answer:
B = 0.129 T
Explanation:
Given,
frequency, f = 60 Hz
maximum emf = 5200 V
Number of turns, N = 130
Area per turn = 0.82 m²
We know,
ω = 2 π f
ω = 2 π x 60 = 376.99 rad/s
now, Magnetic field calculation


B = 0.129 T
Hence, the magnetic field is equal to B = 0.129 T