D) a car speeding up may i have brainliest hope this help
The correct answer would be True!
Answer:
4.4 cm
Explanation:
Given:
Distance of the screen from the slit, D = 1 m
Distance between two third order interference minimas, x = 22 cm
Let's say, minima occurs at:

We have:

Calculating further for the width of the central bright fringe, we have:

= 4.4 cm
Note: w in representswavelength
To solve this problem it is necessary to apply the concepts related to the flow as a function of the volume in a certain time, as well as the potential and kinetic energy that act on the pump and the fluid.
The work done would be defined as

Where,
PE = Potential Energy
KE = Kinetic Energy

Where,
m = Mass
g = Gravitational energy
h = Height
v = Velocity
Considering power as the change of energy as a function of time we will then have to


The rate of mass flow is,

Where,
= Density of water
A = Area of the hose 
The given radius is 0.83cm or
m, so the Area would be


We have then that,



Final the power of the pump would be,



Therefore the power of the pump is 57.11W
The two will fall at the same speed and reach the surface at the same time. This is because the two will experience the same gravitational acceleration on the moon. However, on the earth surface the two will land on the surface of the earth at the same time due to air resistance such that the egg will experience a higher air resistance than the hammer. On, the moon, where there is no noticeable atmosphere there is no air resistance on either object and both fall at the same speed. It is also important to note that their mass doesn't affect their speed.