T is the time for a whole round.
centripetal acceleration = V^2/R,
20 = 40^2 / R, find R = 40^2/20 = 40*40/20 = 80 m, right?
Now, one round is L = 2*pi*R = 2*pi*80 = 160*pi
And T = L/v (distance/speed) = 160*pi/40 = 4*pi seconds, or ~ 12.57 s
The mass will accelerate. Balanced Forces: When forces are in balance, acceleration is zero<span>. </span>
Answer:
357.6g
Explanation:
Given parameters:
Density = 12.459g/cm³
Volume of metal = 28.7cm³
Unknown:
Mass of metal = ?
Solution:
The density of a substance is its mass per unit volume.
To find the mass;
Mass of metal = density x volume
Now insert the parameters and solve;
Mass of metal = 12.459 x 28.7 = 357.6g
Yes, all of these could be applied to a roller coaster.
Based on your problem where as ask for the distance of the ball drop between the pitchers mound and the home plate and with a given of the speed of ball is 43m/s and the homeplates is 60.6ft away. Based on my step by step procedure and also considering the value of gravity by 9.8m/s^2 i came up with the distance of 144m away