Answer:
molarity of acid =0.0132 M
Explanation:
We are considering that the unknown acid is monoprotic. Let the acid is HA.
The reaction between NaOH and acid will be:

Thus one mole of acid will react with one mole of base.
The moles of base reacted = molarity of NaOH X volume of NaOH
The volume of NaOH used = Final burette reading - Initial reading
Volume of NaOH used = 22.50-0.55= 21.95 mL
Moles of NaOH = 0.1517X21.95=3.33 mmole
The moles of acid reacted = 3.33 mmole
The molarity of acid will be = 
The change of phase from a vapor to a liquid is called condensation.
Hope this helps~
Bronsted - Lowry acid in the given reaction is NH₄, as it gives H⁺ ion.
<h3>What is Bronsted - Lowry acid?</h3>
According to the theory of Bronsted - Lowry, acids are those substances which gives H⁺ ion or proton in the aqueous medium.
Given chemical reaction is :
NH₄ + HPO₄²⁻ → NH₃ + H₂PO₄⁻
In the above reaction NH₄ is the Bronsted - Lowry acid as it gives H⁺ ion in the reaction and changes to NH₃ which is the conjugate base of NH₄. Whereas HPO₄²⁻ is the Bronsted - Lowry base as it accepts the H⁺ ion to form H₂PO₄⁻ which is the conjugate acid of it.
Hence, option (1) is correct, i.e. NH₄ is the Bronsted - Lowry acid.
To know more about Bronsted - Lowry acid, visit the below link:
brainly.com/question/1435076
<span>H2SO4 gives 2 moles oh H+ per mole of acid
[H2SO4] = 2M so [H+] = 4M
pH = -log(4) = -.6
Therefore, the pH </span><span>of a 2.0 M H2SO4 solution is -0.6
</span>
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!