Answer: The law of conservation of mass states that, during a chemical reaction, the total mass of the products must be equal to the total mass of the reactants.
Explanation:
Hope it helps
Answer:
chloroplasts, cell walls, or intracellular vacuoles
Explanation:
You didn't list the following, but I'm guessing it is chloroplasts, cell walls, or intracellular vacuoles
Answer:
The study of the human body as a machine for the performance of work has its foundations in three major areas of study—namely, mechanics, anatomy, and physiology; more specifically, biomechanics, musculoskeletal anatomy, and neuromuscular physiology. Explanation:
The mass change, or the mass defect, can be calculated by the formula that is very known to be associated with Albert Einstein.
E = Δmc²
where
E is the energy gained or released during the reaction
c is the speed of light equal to 3×10⁸ m/s
Δm is the mass change
(1.715×10³ kJ)(1,000 J/1 kJ) = Δm(3×10⁸ m/s)²
Δm = 1.91×10⁻¹¹ kg
Answer:
The correct answer is;
5. They were packaged at a higher pressure on the ground, thus causing the gas inside the packages to expand in the sky where the jet is at a lower pressure.
Explanation:
According to Boyle's law, the pressure of a given mass of gas is inversely proportional to it volume at constant temperature
P₁·V₁ = P₂·V₂
At the factories, the peanuts are packaged at atmospheric conditions whereby P₁ = 1 atm, however, the pressure of the air in the atmosphere decreases with altitude as such the pressure in the airplane jet is about a fraction of hat on the ground by about a factor of 0.7.
Therefore P₂ = 0.7 atm and we have
V₂ = P₁·V₁/P₂ = 1 atm×V₁/0.7 atm = 1.43·V₁
The volume increases at high altitudes