The reaction force is the glove pushing against the ball because the reaction force would be the ball pushing onto the glove.
Hope that helps :)
The mass of the object does not change by moving it to another place. ... At the center of the earth the net gravitational force is zero, so the weight will be zero, but its masses will remain same. Hence the mass at the centre of earth will be equl to 50 kg.
Answer:
Tension, T = 1736 N
Explanation:
It is given that,
Mass of bricks, m = 175 kg
A rope is attached to a load of 175 kg bricks lifts the bricks with a steady acceleration of 0.12 m/s² in vertically upwards direction. let T is the tension in the rope. Using second equation of motion as :
T - mg = ma
T = ma + mg
T = m(a + g)
T = 175 kg ( 0.12 m/s² + 9.8 m/s² )
T = 1736 N
Hence, the tension in the wire is 1736 N.
Answer:
Explanation:
a ) It is given that bomb was at rest initially , so , its momentum before the explosion was zero.
b ) We shall apply law of conservation of momentum along x and y direction separately because no external force acts on the bomb.
If v be the velocity of the third part along a direction making angle θ
with x axis ,
x component of v = vcosθ
So momentum along x axis after explosion of third part = mv cosθ
= 10 v cosθ
Momentum along x of first part = - 5 x 42 m/s
momentum of second part along x direction =0
total momentum along x direction before explosion = total momentum along x direction after explosion
0 = - 5 x 42 + 10 v cosθ
v cosθ = 21
Similarly
total momentum along y direction before explosion = total momentum along y direction after explosion
0 = - 5 x 38 + 10 v sinθ
v sinθ= 21
squaring and and then adding the above equation
v² cos²θ +v² sin²θ = 21² +19²
v² = 441 + 361
v = 28.31 m/s
Tanθ = 21 / 19
θ = 48°