Answer:
a = -7.29 m / s²
Explanation:
For this exercise we must use Newton's second law,
F -W = m a
Force is electrical force
F = k q₁ q₂ / r²
k q₁ q₂ / r² -mg = m a
indicate that the charge of the two spheres is equal
q₁ = q₂ = q
a = (k q² / r² - m g) / m
a = k q² / m r² - g
Let's reduce the magnitudes to the SI system
m = 0.19 g (1kg / 1000 g) = 1.9 10⁻⁴ kg
q1 = q2 = q = -23.0 nC (1C / 10⁹ nC) = -23.0 10⁻⁹ C
r = 10.0 cm (1m / 100cm) = 0.1000 m
let's calculate
a = 9 10⁹ (23.0 10⁻⁹)² / (0.1000² 1.9 10⁻⁴) - 9.8
a = -7.29 m / s²
The negative sign indicates that the direction of this acceleration is downward
Answer:
2.24 m/s²
Explanation:
Using equation of motion
s = ut +
at²
u = 0 , t = 3.17 s , s = 11.26 m
Put these values in the equation above
11.26 = 0 +.5 x a( 3.17)²
a = 2.24 ms⁻².
So acceleration due to gravity on that planet will be 2.24 m s⁻².
Answer:
The formula to calculate velocity in this case:
v = v0 + at
=> a = (v - v0)/t
= (50 - 0)/4
= 50/4 = 12.5 (m/s2)
Hope this helps!
:)