If the beam is in static equilibrium, meaning the Net Torque on it about the support is zero, the value of x₁ is 2.46m
Given the data in the question;
- Length of the massless beam;

- Distance of support from the left end;

- First mass;

- Distance of beam from the left end( m₁ is attached to );

- Second mass;

- Distance of beam from the right of the support( m₂ is attached to );

Now, since it is mentioned that the beam is in static equilibrium, the Net Torque on it about the support must be zero.
Hence, 
we divide both sides by 

Next, we make
, the subject of the formula
![x_1 = x - [ \frac{m_2x_2}{m_1} ]](https://tex.z-dn.net/?f=x_1%20%3D%20x%20-%20%5B%20%5Cfrac%7Bm_2x_2%7D%7Bm_1%7D%20%5D)
We substitute in our given values
![x_1 = 3.00m - [ \frac{61.7kg\ * \ 0.273m}{31.3kg} ]](https://tex.z-dn.net/?f=x_1%20%3D%203.00m%20-%20%5B%20%5Cfrac%7B61.7kg%5C%20%2A%20%5C%200.273m%7D%7B31.3kg%7D%20%5D)


Therefore, If the beam is in static equilibrium, meaning the Net Torque on it about the support is zero, the value of x₁ is 2.46m
Learn more; brainly.com/question/3882839
Answer:
Explanation:
The cannonball goes a horizontal distance of 275 m . It travels a vertical distance of 100 m
Time taken to cover vertical distance = t ,
Initial velocity u = 0
distance s = 100 m
acceleration a = 9.8 m /s²
s = ut + 1/2 g t²
100 = .5 x 9.8 x t²
t = 4.51 s
During this time it travels horizontally also uniformly so
horizontal velocity Vx = horizontal displacement / time
= 275 / 4.51 = 60.97 m /s
Vertical velocity Vy
Vy = u + gt
= 0 + 9.8 x 4.51
= 44.2 m /s
Resultant velocity
V = √ ( 44.2² + 60.97² )
= √ ( 1953.64 + 3717.34 )
= 75.3 m /s
Angle with horizontal Ф
TanФ = Vy / Vx
= 44.2 / 60.97
= .725
Ф = 36⁰ .
Answer:

Explanation:
Two identical bodies are sliding toward each other on a frictionless surface.
Initial speed of body 1, m₁ = 1 m/s
Initial speed of body 2, m₂ = 2 m/s
They collide and stick.
We need to find the speed of the combined mass. Let V is the speed of the combined mass.
Using the conservation of momentum.

We have, m₁ = m₂ = m

So, the speed of the combined mass is
.