Answer:
a) 2.41 km
b) 38.8°
Questions c and d are illegible.
Explanation:
We can express the displacements as vectors with origin on the point he started (0, 0).
When he traveled south he moved to (-3, 0).
When he moved east he moved to (-3, x)
The magnitude of the total displacement is found with Pythagoras theorem:
d^2 = dx^2 + dy^2
Rearranging:
dy^2 = d^2 - dx^2


The angle of the displacement vector is:
cos(a) = dx/d
a = arccos(dx/d)
a = arccos(3/3.85) = 38.8°
Complete question:
What is the peak emf generated by a 0.250 m radius, 500-turn coil is rotated one-fourth of a revolution in 4.17 ms, originally having its plane perpendicular to a uniform magnetic field 0.425 T. (This is 60 rev/s.)
Answer:
The peak emf generated by the coil is 15.721 kV
Explanation:
Given;
Radius of coil, r = 0.250 m
Number of turns, N = 500-turn
time of revolution, t = 4.17 ms = 4.17 x 10⁻³ s
magnetic field strength, B = 0.425 T
Induced peak emf = NABω
where;
A is the area of the coil
A = πr²
ω is angular velocity
ω = π/2t = (π) /(2 x 4.17 x 10⁻³) = 376.738 rad/s = 60 rev/s
Induced peak emf = NABω
= 500 x (π x 0.25²) x 0.425 x 376.738
= 15721.16 V
= 15.721 kV
Therefore, the peak emf generated by the coil is 15.721 kV
Answer:In the decades prior to 1993 there was a robust Pacific herring population in Prince William Sound (PWS). Not only are these forage fish a key link in the complex food web of PWS, but they supported a lucrative early-season commercial fishery that brought the communities of the Sound to life each spring. By 1994, that fishery was closed and only briefly reopened for two years in the late 1990s. The current, approximately 10,000-ton biomass, is tiny compared to the peak value of 130,000 tons or the long-term average prior to the collapse of around 65,000 ton.
Explanation:
Scientists could investigate this idea by making cathode ray tubes out of different materials to see if the ray was the same.
Answer:
markers are 29.76 m far apart in the laboratory
Explanation:
Given the data in the question;
speed of particle = 0.624c
lifetime = 159 ns = 1.59 × 10⁻⁷ s
we know that; c is speed of light which is equal to 3 × 10⁸ m/s
we know that
distance = vt
or s = ut
so we substitute
distance = 0.624c × 1.59 × 10⁻⁷ s
distance = 0.624(3 × 10⁸ m/s) × 1.59 × 10⁻⁷ s
distance = 1.872 × 10⁸ m/s × 1.59 × 10⁻⁷ s
distance = 29.76 m
Therefore, markers are 29.76 m far apart in the laboratory