In physics, circular motion is a movement of an object along the circumference of a circle or rotation along a circular path. It can be uniform, with constant angular rate of rotation and constant speed, or non-uniform with a changing rate of rotation. Since the object's velocity vector is constantly changing direction, the moving object is undergoing acceleration by a centripetal force in the direction of the center of rotation. Without this acceleration, the object would move in a straight line.
In this sense, the acceleration is always changing due to centripetal acceleration.
Answer:
A. Acceleration
The force required to pull one of the microscope sliding at a constant speed of 0.28 m/s relative to the other is zero.
<h3>
Force required to pull one end at a constant speed</h3>
The force required to pull one of the microscope sliding at a constant speed of 0.28 m/s relative to the other is determined by applying Newton's second law of motion as shown below;
F = ma
where;
- m is mass
- a is acceleration
At a constant speed, the acceleration of the object will be zero.
F = m x 0
F = 0
Thus, the force required to pull one of the microscope sliding at a constant speed of 0.28 m/s relative to the other is zero.
Learn more about constant speed here: brainly.com/question/2681210
Supposing the runner is condensed to a point and moves upward at 2.2 m/s.
It takes a time = 2.2/g = 2.2/9.8 = 0.22 seconds to increase to max height.
Now looking at this condition in opposite - that is the runner is at max height and drops back to earth in 0.22 s (symmetry of this kind of motion).
From what height does any object take 0.22 s to fall to earth (supposing there is no air friction)?
d = 1/2gt²= (0.5)(9.8)(0.22)²= 0.24 m
Answer:
the orbits of the planets are elliptical
the sun is the center of the solar system
includes 9 planets
Answer:
The tension in the string is equal to Ct
And the time t0 when the rension in the string is 27N is 3.6s.
Explanation:
An approach to solving this problem jnvolves looking at the whole system as one body by drawing an imaginary box around both bodies and taking summation of the forces. This gives F2 - F1 = Ct. This is only possible assuming the string is massless and does not stretch, that way transmitting the force applied across it undiminished.
So T = Ct
When T = 27N then t = T/C = 27/7.5 = 3.6s