let the length of the beam be "L"
from the diagram
AD = length of beam = L
AC = CD = AD/2 = L/2
BC = AC - AB = (L/2) - 1.10
BD = AD - AB = L - 1.10
m = mass of beam = 20 kg
m₁ = mass of child on left end = 30 kg
m₂ = mass of child on right end = 40 kg
using equilibrium of torque about B
(m₁ g) (AB) = (mg) (BC) + (m₂ g) (BD)
30 (1.10) = (20) ((L/2) - 1.10) + (40) (L - 1.10)
L = 1.98 m
<h2>
Time taken is 0.632 seconds</h2>
Explanation:
Impulse momentum theorem is change in momentum is impulse.
Change in momentum = Impulse
Final momentum - Initial momentum = Impulse
Mass x Final velocity - Mass x Initial Velocity = Force x Time
Mass x Final velocity - Mass x Initial Velocity =Mass x Acceleration x Time
Final velocity - Initial Velocity = Acceleration x Time
Final velocity = 9.9 m/s
Initial Velocity = 3.7 m/s
Acceleration = 9.81 m/s²
Substituting
9.9 - 3.7 = 9.81 x Time
Time = 0.632 seconds
Time taken is 0.632 seconds
Answer:
Zero work done,since the body isn't acting against or by gravity.
Explanation:
Gravitational force is usually considered as work done against gravity (-ve) and work by gravity ( +ve ) and also When work isn't done by or against gravity work done in this case is zero.
Gravitational force can be define as that force that attracts a body to any other phyical body or system that have mass.
The planet been considered as our system in this case is assumed to have mass, and ought to demonstrate such properties associated with gravitational force in such system. Such properties include the return of every object been thrown up as a result of gravity acting downwards. The orbiting nature of object along an elliptical part when gravitational force isn't acting on the body and it is assumed to be zero.
Answer:
C
Explanation:
An element is a pure substance that can not be broken down into anything simpler
A compound in also a pure substance held together in fixed proportion through chemical bonds