Answer:
b. varies inversely with the square of the distance from the center of Earth.
Explanation:
Comparing the Newton's law of universal gravitation and second law of motion;
from Newton's second law of motion,
F = ma ............. 1
from New ton's law of universal gravitation,
F =
........... 2
Equating 1 and 2, we have;
mg = 
g = 
Therefore, the acceleration due to gravity near Earth, g, is inversely proportional to the square of the distance from the center of Earth.
Acceleration is the rate of change of the velocity of an object that is moving. This value is a result of all the forces that is acting on an object which is described by Newton's second law of motion. To determine acceleration, we need to know the initial velocity and the final velocity and the time elapsed. From the given values, we need t o calculate for the initial velocity. We use some kinematic equations. We do as follows:
x = v0t + at^2/2
60 = v0(6) + a(6)^2/2
60 = 6v0 + 18a (EQUATION 1)
vf = v0 + at
15 = v0 + a(6)
15 = v0 + 6a (EQUATION 2)
Solving for v0 and a,
v0 = 5 m/s
a = 1.7 m/s^2
Zalice sucks chakra woman trAnsfer to the fezze y try e
In order to change the frictional force between two solid surfaces, it can be changed by shorter distances and by the amount of weight it has or the amount of force that is pushing that object to go however distance it can.
44 x 12. I got the 12 from the total of 12 months in a year.
44 > 40
x
12 > 10
----------
The way my teacher taught me how to estimate is look at the neighbor to 44 and 12. The only time 44 can become 50, is when the neighbor is 5 or up. Same thing for 12. Now, multiply 40 and 10.
40 x 10 = 400.
Therefore, your estimate is 400.
The real answer is 520 breaths.