When you calculate results that are aiming for known values, the percent error formula is useful tool for determining the precision of your calculations. The formula is given by: The experimental value is your calculated value, and the theoretical value is your known value.
Answer:
58.0 g/mol
Explanation:
The reaction that takes place is:
- MCl₂ + 2AgNO₃ → 2AgCl + M(NO₃)₂
First we <u>calculate how many moles of silver chloride</u> were produced, using its <em>molar mass</em>:
- 6.41 g AgCl ÷ 143.32 g/mol = 0.0447 mol AgCl
Then we <u>convert AgCl moles into MCl₂ moles</u>, using the <em>stoichiometric ratio</em>:
- 0.0447 mol AgCl *
= 0.0224 mol MCl₂
Now we<u> calculate the molar mass of MCl₂</u>, using the original<em> mass of the sample</em>:
- 2.86 g / 0.0224 mol = 127.68 g/mol
We can write the molar mass of MCl₂ as:
- Molar Mass MCl₂ = Molar Mass of M + (Molar Mass of Cl)*2
- 127.68 g/mol = Molar Mass of M + (35.45 g/mol)*2
Finally we<u> calculate the molar mass</u> of M:
- Molar Mass of M = 57 g/mol
The closest option is 58.0 g/mol.
Answer:
The mass of ammonia (NH3) that contains
hydrogen atoms is
g.
Explanation:
As
atoms of hydrogen = 1 mole of the hydrogen atom
Therefore,
atoms of hydrogen
moles of the hydrogen atom.
Now, there are 3 moles of hydrogen atoms in 1 mole of ammonia
.
As the mass of 1 mole of ammonia is 17g, so
when there are 3 moles of hydrogen atoms, then the mass of ammonia = 17 g
Therefore, when there are
moles of hydrogen atoms, then the mass of ammonia
g.
Hence, the mass of ammonia
that contains
hydrogen atoms is
g.
I think that it's d) F- but I'm not sure.
Answer:
A. 1
Explanation:
The higher you get in the atmosphere the cooler the temperature will be. The reason it's actually colder is because, as you go up in the atmosphere, the Earth's atmosphere feels less pressure the higher up you go. So as the gas in the atmosphere rises it feels less pressure, which makes it expand.
Hope this Help :)
Please mark brainliest :D