The correct answer is d) 200 lbs.
Hope that I was of help.
Answer:
106.7 N
Explanation:
We can solve the problem by using the impulse theorem, which states that the product between the average force applied and the duration of the collision is equal to the change in momentum of the object:

where
F is the average force
is the duration of the collision
m is the mass of the ball
v is the final velocity
u is the initial velocity
In this problem:
m = 0.200 kg
u = 20.0 m/s
v = -12.0 m/s

Solving for F,

And since we are interested in the magnitude only,
F = 106.7 N
Yes, it can be unicellular and multicellular
Its true hopefully this helps you.
Answer:

Explanation:
The electric flux is defined as the multiple of electric field and the area that the electric field passes through, such that

When calculating the electric flux, the angle between the directions of electric field and the area becomes important, especially if the angle is changing with time.
The above formula can be rewritten as follows

where θ is the angle between the electric field and the area of the loop. Note that, the direction of the area of the loop is perpendicular to the plane of the loop.
If the loop is rotating with constant angular velocity ω, then the angle can be written as follows

At t = 0, cos(0) = 1 and the electric flux through the loop is at its maximum value.
Therefore the electric flux can be written as a function of time
