Answer:
option B.
Explanation:
The correct answer is option B.
when the ball drops, the velocity of the ball before the collision is v
After the collision, the velocity of the ball is the same but in the opposite direction.
Impulse delivered to the ball and the floor, in this case, is not zero.
The magnitude of the momentum remains the same but the direction of the ball changes.
Answer:
a). V = 3.13*10⁶ m/s
b). T = 1.19*10^-7s
c). K.E = 2.04*10⁵
d). V = 1.02*10⁵V
Explanation:
q = +2e
M = 4.0u
r = 5.94cm = 0.0594m
B = 1.10T
1u = 1.67 * 10^-27kg
M = 4.0 * 1.67*10^-27 = 6.68*10^-27kg
a). Centripetal force = magnetic force
Mv / r = qB
V = qBr / m
V = [(2 * 1.60*10^-19) * 1.10 * 0.0594] / 6.68*10^-27
V = 2.09088 * 10^-20 / 6.68 * 10^-27
V = 3.13*10⁶ m/s
b). Period of revolution.
T = 2Πr / v
T = (2*π*0.0594) / 3.13*10⁶
T = 1.19*10⁻⁷s
c). kinetic energy = ½mv²
K.E = ½ * 6.68*10^-27 * (3.13*10⁶)²
K.E = 3.27*10^-14J
1ev = 1.60*10^-19J
xeV = 3.27*10^-14J
X = 2.04*10⁵eV
K.E = 2.04*10⁵eV
d). K.E = qV
V = K / q
V = 2.04*10⁵ / (2eV).....2e-
V = 1.02*10⁵V
Answer:
I literally just learned this last week and if I remember correctly it is Faraday's Law of Induction.
Explanation: Hope this helps also I hope you have/had an amazing day today<3
Complete Question
A 100-W (watt) light bulb has resistance R=143Ω (ohms) when attached to household current, where voltage varies as V=V0sin(2πft), where V0=110 V, f=60 Hz. The power supplied to the bulb is P=V2R J/s (joules per second) and the total energy expended over a time period [0,T] (in seconds) is ![U = \int\limits^T_0 {P(t)} \, dt](https://tex.z-dn.net/?f=U%20%20%3D%20%20%5Cint%5Climits%5ET_0%20%7BP%28t%29%7D%20%5C%2C%20dt)
Compute U if the bulb remains on for 5h
Answer:
The value is ![U = 7.563 *10^{5} \ J](https://tex.z-dn.net/?f=U%20%20%3D%20%207.563%20%2A10%5E%7B5%7D%20%5C%20%20J)
Explanation:
From the question we are told that
The power rating of the bulb is
The resistance is ![R = 143 \ \Omega](https://tex.z-dn.net/?f=R%20%3D%20%20143%20%5C%20%5COmega)
The voltage is ![V = V_o sin [2 \pi ft]](https://tex.z-dn.net/?f=V%20%20%3D%20%20V_o%20%20sin%20%5B2%20%5Cpi%20ft%5D)
The energy expanded is ![U = \int\limits^T_0 {P(t)} \, dt](https://tex.z-dn.net/?f=U%20%20%3D%20%20%5Cint%5Climits%5ET_0%20%7BP%28t%29%7D%20%5C%2C%20dt)
The voltage ![V_o = 110 \ V](https://tex.z-dn.net/?f=V_o%20%20%3D%20%20110%20%5C%20%20V)
The frequency is ![f = 60 \ Hz](https://tex.z-dn.net/?f=f%20%3D%20%2060%20%5C%20%20Hz)
The time considered is ![t = 5 \ h = 18000 \ s](https://tex.z-dn.net/?f=t%20%3D%20%205%20%5C%20%20h%20%20%3D%20%2018000%20%5C%20%20s)
Generally power is mathematically represented as
![P = \frac{V^2}{ R}](https://tex.z-dn.net/?f=P%20%3D%20%20%5Cfrac%7BV%5E2%7D%7B%20R%7D)
=> ![P = \frac{( 110 sin [2 \pi * 60t])^2}{ 144}](https://tex.z-dn.net/?f=P%20%3D%20%20%5Cfrac%7B%28%20110%20%20sin%20%5B2%20%5Cpi%20%2A%2060t%5D%29%5E2%7D%7B%20144%7D)
=> ![P = \frac{ 110^2 [ sin [120 \pi t])^2}{ 144}](https://tex.z-dn.net/?f=P%20%3D%20%20%5Cfrac%7B%20110%5E2%20%5B%20sin%20%5B120%20%5Cpi%20t%5D%29%5E2%7D%7B%20144%7D)
So
![U = \int\limits^T_0 { \frac{ 110^2* [sin [120 \pi t])^2}{ 144}} \, dt](https://tex.z-dn.net/?f=U%20%20%3D%20%20%5Cint%5Climits%5ET_0%20%7B%20%5Cfrac%7B%20110%5E2%2A%20%20%5Bsin%20%5B120%20%5Cpi%20t%5D%29%5E2%7D%7B%20144%7D%7D%20%5C%2C%20dt)
=> ![U = \frac{110^2}{144} \int\limits^T_0 { ( sin^2 [120 \pi t]} \, dt](https://tex.z-dn.net/?f=U%20%20%3D%20%20%5Cfrac%7B110%5E2%7D%7B144%7D%20%5Cint%5Climits%5ET_0%20%7B%20%28%20%20%20sin%5E2%20%5B120%20%5Cpi%20t%5D%7D%20%5C%2C%20dt)
=> ![U = \frac{110^2}{144} \int\limits^T_0 { \frac{1 - cos 2 (120\pi t)}{2} } \, dt](https://tex.z-dn.net/?f=U%20%3D%20%20%5Cfrac%7B110%5E2%7D%7B144%7D%20%5Cint%5Climits%5ET_0%20%7B%20%5Cfrac%7B1%20-%20cos%202%20%28120%5Cpi%20t%29%7D%7B2%7D%20%7D%20%5C%2C%20dt)
=> ![U = \frac{110^2}{144} \int\limits^T_0 { \frac{1 - cos 240 \pi t)}{2} } \, dt](https://tex.z-dn.net/?f=U%20%3D%20%20%5Cfrac%7B110%5E2%7D%7B144%7D%20%5Cint%5Climits%5ET_0%20%7B%20%5Cfrac%7B1%20-%20cos%20240%20%5Cpi%20t%29%7D%7B2%7D%20%7D%20%5C%2C%20dt)
=> ![U = \frac{110^2}{144} [\frac{t}{2} - [\frac{1}{2} * \frac{sin(240 \pi t)}{240 \pi} ] ]\left | T} \atop {0}} \right.](https://tex.z-dn.net/?f=U%20%3D%20%20%5Cfrac%7B110%5E2%7D%7B144%7D%20%5B%5Cfrac%7Bt%7D%7B2%7D%20%20-%20%5B%5Cfrac%7B1%7D%7B2%7D%20%2A%20%20%5Cfrac%7Bsin%28240%20%5Cpi%20t%29%7D%7B240%20%5Cpi%7D%20%5D%20%5D%5Cleft%20%20%7C%20T%7D%20%5Catop%20%7B0%7D%7D%20%5Cright.)
=> ![U = \frac{110^2}{144} [\frac{t}{2} - [\frac{1}{2} * \frac{sin(240 \pi t)}{240 \pi} ] ]\left | 18000} \atop {0}} \right.](https://tex.z-dn.net/?f=U%20%3D%20%20%5Cfrac%7B110%5E2%7D%7B144%7D%20%5B%5Cfrac%7Bt%7D%7B2%7D%20%20-%20%5B%5Cfrac%7B1%7D%7B2%7D%20%2A%20%20%5Cfrac%7Bsin%28240%20%5Cpi%20t%29%7D%7B240%20%5Cpi%7D%20%5D%20%5D%5Cleft%20%20%7C%2018000%7D%20%5Catop%20%7B0%7D%7D%20%5Cright.)
![U = \frac{110^2}{144} [\frac{18000}{2} - [\frac{1}{2} * \frac{sin(240 \pi (18000))}{240 \pi} ] ]](https://tex.z-dn.net/?f=U%20%3D%20%20%5Cfrac%7B110%5E2%7D%7B144%7D%20%5B%5Cfrac%7B18000%7D%7B2%7D%20%20-%20%5B%5Cfrac%7B1%7D%7B2%7D%20%2A%20%20%5Cfrac%7Bsin%28240%20%5Cpi%20%2818000%29%29%7D%7B240%20%5Cpi%7D%20%5D%20%5D)
=> ![U = 7.563 *10^{5} \ J](https://tex.z-dn.net/?f=U%20%20%3D%20%207.563%20%2A10%5E%7B5%7D%20%5C%20%20J)