Answer:
15.8 V
Explanation:
The relationship between capacitance and potential difference across a capacitor is:

where
q is the charge stored on the capacitor
C is the capacitance
V is the potential difference
Here we call C and V the initial capacitance and potential difference across the capacitor, so that the initial charge stored is q.
Later, a dielectric material is inserted between the two plates, so the capacitance changes according to

where k is the dielectric constant of the material. As a result, the potential difference will change (V'). Since the charge stored by the capacitor remains constant,

So we can combine the two equations:

and since we have
V = 71.0 V
k = 4.50
We find the new potential difference:

The sun is a clear example of objects releasing radiation in nature
The Beams And Joints That Hold It .
Answer:
The system loses 90 kJ of heat
Explanation:
We can answer the question by using the 1st law of thermodynamics, which states that:

where
is the change in internal energy of the system
is the heat absorbed by the system (positive if absorbed, negative if released by the system)
is the work done by the system (positive if done by the system, negative if done by the surrounding on the system)
In this problem, we have:
is the work done (negative, because it is done by the surrounding on the system)
is the increase in internal energy
Using the equation above, we can find Q, the heat absorbed/released by the system:

And the negative sign means that the system has lost this heat.