Answer:
TRUE
Explanation:
remember newtons laws of motion. Every action has an equal and opposite reaction. LOL
Answer:
1.18 moles of CS₂ are produced by the reaction.
Explanation:
We present the reaction:
5C + 2SO₂ → CS₂ + 4CO
5 moles of carbon react to 2 moles of sulfur dioxide in order to produce 1 mol of carbon disulfide and 4 moles of carbon monoxide.
As we do not have data from the SO₂, we assume this as the excess reagent. We convert the mass of carbon to moles:
70.8 g / 12 g/mol = 5.9 moles
Ratio is 5:1, so 5 moles of carbon react to produce 1 mol of CS₂
Then, 5.9 moles will produce (5.9 . 1) / 5 = 1.18 moles
Answer:
I don't see a specific question, so I'll make a few comments and hope that answers the reason for the post.
Explanation:
Zinc(Zn) does react with iron chloride, since zinc is a more reactive metal than the iron.
When Zn is introduced to an iron (III) chloride solution, the Zn disoplaces the Fe atom in a displacement reaction.
The chemical equation of the reaction:
Zn + Fe(III)Cl3 → ZnCl3 + Fe
Energy is often realeased in this type of reaction, since the resulting chemical products have a lower energy that the reactants.
There are several metals more reactive than iron. One of the more interesting examples of a highly exothermic reaction with iron chloride (rust) is the reaction of aluminum with iron chloride. `This is highly exothermic and is labelled a thermite reaction. It provides a spectacular flame that is not enough to weld railroad tracks together.
Answer:
1.88 × 10²⁴ atoms
Explanation:
Step 1: Given data
Mass of sulfur: 100 g
Step 2: Calculate the moles corresponding to 100 g of sulfur
The molar mass of sulfur is 32.07 g/mol. The moles corresponding to 100 g of sulfur are:
100 g × (1 mol/32.07 g) = 3.12 mol
Step 3: Calculate the number of atoms in 3.12 moles of sulfur
We will use Avogadro's number: there are 6.02 × 10²³ atoms of sulfur in 1 mole of sulfur.
3.12 mol × (6.02 × 10²³ atoms/1 mol) = 1.88 × 10²⁴ atoms