Answer:
2.06 × 10⁻¹⁰
Explanation:
Let's consider the solution of a generic compound AB₂.
AB₂(s) ⇄ A²⁺(aq) + 2B⁻(aq)
We can relate the molar solubility (S) with the solubility product constant (Kps) using an ICE chart.
AB₂(s) ⇄ A²⁺(aq) + 2B⁻(aq)
I 0 0
C +S +2S
E S 2S
The solubility product constant is:
Kps = [A²⁺] × [B⁻]² = S × (2S)² = 4 × S³ = 4 × (3.72 × 10⁻⁴)³ = 2.06 × 10⁻¹⁰
The balanced equation :
4Fe + 3O₂⇒ 2Fe₂O₃
<h3>Further explanation</h3>
Given
Rust reaction
Required
Balanced equation
Solution
Reaction
Fe + O₂⇒ 2Fe₂O₃
For a simple equation where one of the reaction coefficients is known, we can immediately add the corresponding coefficient using the principle that the number of atoms of <em>the components in the reactants and products is the same.
</em>
In the above reaction :
Fe, left=1, right = 4, so coefficient in the left=4
O, left=2, right = 6, so coefficient in the left=3
Bohr display says obviously the electron spins around the core in orbit. so circle implies a circular locale around core.