Explanation:
The Holy Roman Empire (Latin: Sacrum Imperium Romanum; German: Heiliges Römisches Reich), also termed as the First Reich, was a multi-ethnic complex of territories in Western and Central Europe that developed during the Early Middle Ages and continued until its dissolution in 1806 during the Napoleonic Wars.[6] The largest territory of the empire after 962 was the Kingdom of Germany, though it also included the neighboring Kingdom of Bohemia and Kingdom of Italy, plus numerous other territories, and soon after the Kingdom of Burgundy was added. However, while by the end of the 15th century the Empire was still in theory composed of three major blocks – Italy, Germany, and Burgundy – in practice only the Kingdom of Germany remained, with the Burgundian territories lost to France and the Italian territories, ignored in the Imperial Reform, although formally part of the Empire, were splintered into numerous de facto independent territorial entities.[7][8][9][10] The external borders of the Empire did not change noticeably from the Peace of Westphalia – which acknowledged the exclusion of Switzerland and the Northern Netherlands, and the French protectorate over Alsace – to the dissolution of the Empire. By then, it largely contained only German-speaking territories, plus the Kingdom of Bohemia, the southern Netherlands and lands of Carniola. At the conclusion of the Napoleonic Wars in 1815, most of the Holy Roman Empire was included in the German Confederation.
in yr language:
Ang Holy Roman Empire (Latin: Sacrum Imperium Romanum; German: Heiliges Römisches Reich), na tinawag din bilang First Reich, ay isang multi-etniko na kumplikado ng mga teritoryo sa Kanluran at Gitnang Europa na d
(I know this is late so hopefully other people find it helpful)
<u>Answer</u>: Solid Cu
Since this is a <u>voltaic cell</u>:
<u>Copper</u> is the cathode, therefore having a positive charge.
<u>Zinc</u> is the anode, therefore having a negative charge.
(Also, I took the exam and it's correct; good luck everyone!)
Ideal Gas law PV=nRT
P- pressure(atm)
V-volume( liter)
R- gas constant
T- temperature(kelvin)
n - number of moles
Answer:
(a) sp³ sp³
H₃<u>C</u> - <u>C</u>H₃
(b) sp³ sp²
H₃<u>C</u> - <u>C</u>H = <u>C</u>H₂
sp²
(c) sp³ sp
H₃<u>C</u> - <u>C</u> ≡ <u>C</u> - <u>C</u>H₂OH
sp sp³
(d) sp³ sp²
H₃<u>C</u> - <u>C</u>H=O
Explanation:
Alkanes or the carbons with all the single bonds are sp³ hybridized.
Alkenes or the carbons with double bond(s) are sp² hybridized.
Alkynes or the carbons with triple bond are sp hybridized.
Considering:
(a) H₃C-CH₃ , Both the carbons are bonded by single bond so both the carbons are sp³ hybridized.
Hence,
sp³ sp³
H₃<u>C</u> - <u>C</u>H₃
(b) H₃C-CH=CH₂ , The carbon of the methyl group is sp³ hybridized as it is boned via single bonds. The rest 2 carbons are sp² hybridized because they are bonded by double bond.
Hence,
sp³ sp²
H₃<u>C</u> - <u>C</u>H = <u>C</u>H₂
sp²
(c) H₃C-C≡C-CH₂OH , The carbons of the methyl group and alcoholic group are sp³ hybridized as it is boned via single bonds. The rest 2 carbons are sp hybridized because they are bonded by triple bond.
Hence,
sp³ sp
H₃<u>C</u> - <u>C</u> ≡ <u>C</u> - <u>C</u>H₂OH
sp sp³
(d)CH₃CH=O, The carbon of the methyl group is sp³ hybridized as it is boned via single bonds. The other carbon is sp² hybridized because it is bonded by double bond to oxygen.
Hence,
sp³ sp²
H₃<u>C</u> - <u>C</u>H=O
This is called adaptation. An example would be a polar bear with white fur. They have this to be more efficent hunters, as they use it as a type of camouflage in order to sneak up on prey. Brown bear use this in the same way but their environment requires them to be brown in order to blend in beter with trees. So basicly adaptation